
Name: Mansi Shetty

Document/Page ranking using

tf-idf Weighting Scheme

CSE 633(SPRING 2020)

Instructor: Dr. Russ Miller

Overview

• Terminologies and Definitions

• Problem Statement

• Applications

• Sequential Algorithm

• Parallel Implementation

• Results

• Observations

• References

Terminologies and Definitions

Document

A document is a collections of terms/words. Examples: Web page, tweet

Corpus

It is a collection of documents

Term Frequency (TF)

It is a document weighting scheme that takes into account the number of occurrences of the term t in document d.

Inverse Document Frequency (IDF)

It is defined as, idf(t) = log(N/df)

where, N is the total number of documents in the corpus and df is the document frequency which indicates

the number of documents in the corpus that contain the term t.

Problem Statement

Rank documents/search results based on Term Frequency – Inverse Document Frequency, a

numerical statistic that is intended to reflect how important a word is to a document in a collection

or corpus

tf-idft,d = tft,d × idft

Score(q, d) = ∑ tf-idft,d
t ϵ q

Example

• Lets consider a corpus with two documents i.e. N=2

• For document 1 (d1),

tfthis,d1 = 1/5 , idfthis = log(2/2) = 0

tfis,d1 = 1/5 , idfis = log(2/2) = 0

tfa,d1 = 2/5 , idfa = log(2/1) = 0.301

tfsample,d1 = 1/5 , idfsample = log(2/1) = 0.301

• For document 2 (d2),

tfthis,d2 = 1/7 , idfthis = log(2/2) = 0

tfis,d2 = 1/7 , idfis = log(2/2) = 0

tfanother,d2 = 2/7 , idfanother = log(2/1) = 0.301

tfexample,d2 = 3/7 , idfexample = log(2/1) = 0.301

Therefore,

tf-idfsample,d1 = (1/5) * 0.301 = 0.0602

tf-idfsample,d2 = 0 * 0.301 = 0

tf-idfexample,d1 = 0 * 0.301 = 0

tf-idfexample,d2 = (3/7) * 0.301 = 0.129

Applications

• Information retrieval

• Web search

• Keyword Extraction

• Stop words elimination

In applications like above, the time taken to return the results becomes the most important factor and given

the amount of data that the internet has to offer today, computations takes a significantly longer time.

Sequential Algorithm

• Create an inverted index

{term: (document frequency, [document list])}

• Read the query terms and create a list of resultant documents

• Calculate term frequency tft,d

• Calculate inverse document frequency idft

• Calculate tf-idf score for each document

• Sort the documents based on tf-idf score

Parallel Implementation

• Consider N documents and P processors.

• Assign N/P documents to each processor.

• Each processor creates the inverted index for its N/P documents independently.

• The file with the queries is read by each processor.

• Document frequencies of all the terms of the query are consolidated by recursive halving and broadcasting.

• Processors independently form the resultant set from their inverted index.

• Results in each of the processors are ranked according to tf-idf weighting scheme.

• Final result for each query is consolidated by recursive halving where the task is to merge two sorted lists.

RESULTS

Total number of articles: 6144

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256 512

T
im

e
 (

s
)

Number of Processors

Number of articles: 6144Number of Processors Time (s)

2 24.598

4 11.837

8 6.024

16 3.288

32 1.735

64 1.120

128 0.771

256 0.632

512 0.786

Total number of articles: 12288

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256

T
im

e
 (

s
)

Number of Processors

Number of articles: 12288

Number of Processors Time (s)

2 56.093

4 27.075

8 13.719

16 6.757

32 3.330

64 1.852

128 1.126

256 0.739

Total number of articles: 24576

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128 256 512

T
im

e
 (

s
)

Number of Processors

Number of articles: 24576Number of Processors Time (s)

2 122.559

4 57.218

8 28.548

16 14.354

32 7.184

64 3.202

128 1.725

256 0.995

512 0.759

Constant number of articles/processor (165 articles/processor)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16 32 64 128 256

T
im

e
 (

s
)

Number of processors

Constant number of articles/processorNumber of processors Articles Time(s)

2 330 1.370

4 660 1.368

8 1320 1.459

16 2640 1.420

32 5280 1.454

64 10560 1.498

128 21120 1.562

256 42240 1.638

Observations

• For 6144 total articles, as we increase processors beyond 256, the total time increases as the communication overhead

overpowers reduction in computation time.

• For 24576 total articles, there is not a significant decrease in total time when we increase the processors from 256 to

512.

• When we maintain a constant number of articles/processors, the computation time remains comparable with slight

increase as we increase the number of processors.

References

• Algorithms Sequential & Parallel: A Unified Approach (Dr. Russ Miller, Dr.Laurence Boxer)

• https://nlp.stanford.edu/IR-book/

• https://en.wikipedia.org/wiki/Tf%E2%80%93idf

• https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089

• https://mpi4py.readthedocs.io/en/stable/

• https://www.kaggle.com/snapcrack/all-the-news

https://nlp.stanford.edu/IR-book/
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-python-on-real-world-dataset-796d339a4089
https://mpi4py.readthedocs.io/en/stable/
https://www.kaggle.com/snapcrack/all-the-news

Thank You!

