
‘-

1

- Presenter: Mrunal Inge 
- Instructor: Dr.Russ Miller

HYPER QUICK SORT



‘-

2

CONTENTS:

• Introduction 
• Sequential Quicksort 
• Parallel Quicksort 
• Example 
• Hyperquicksort  
• Readings 
• Observations 
• References 



‘-

3

• Quicksort is one of the algorithms used to sort in ascending and descending order. 
• It is a divide and conquer algorithm. 
• On an average it takes O(n log n) complexity, making quicksort suitable for sorting 

huge data volumes.

What is Quicksort?



‘-

4

• We pick a pivot element and partition the array around the pivot element. 

• The pivot element can be any random element or median of subset of elements from the array. 

• Suppose the median is x, all the elements less than x will go to the left of x, we call it as low list and elements greater 
than x would go a to the right of x, we call it as high list. 

• Then the low list and high list recursively sorts itself as mentioned above. 

• The final sorted list will be the concatenation of the low list, high list and the median.  

Sequential Quicksort



‘-

5

• We randomly choose a pivot from one processor and broadcast it to every other processor. 

• Each process divides its unsorted list into two lists, those smaller than or equal to pivot and those greater than 
pivot. 

• Each processor in upper half of the processor list sends its low list to a partner processor in lower half of the 
processor list and receives a high list in return. 

• Now, the upper half of the processors have only values greater than the pivot and lower half of the processors 
have values smaller than pivot. 

• Thereafter, the processors divide themselves into two groups and the algorithms continues recursively. 

• After log(P) recursions, every processor has an unsorted list of values completely disjoint from the values held 
by other processors. 

• The largest value held by processor i will be smaller than the smallest value held by processor i+1.  

• Each processor can sort its list using sequential sort.

Parallel Quicksort



‘-

6

Example
     

      1,5,10,12,17,2,6,9,14,19,3,8,13,15,20,4,7,11,16,18 
       
     After scattering above List: 

     1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18



‘-

7

Example
     

       1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18 
     1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18 



‘-

8

Example
     

       1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18 
     1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18 
     1,3,5,8,10 || 4,7,2,6,9 || 12,13,15,17,20 || 11,14,16,18,19 



‘-

9

Example
     

       1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18 
     1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18 
     1,3,5,8,10 || 4,7,2,6,9 || 12,13,15,17,20 || 11,14,16,18,19 
     1,3,5,8,10 || 4,7,2,6,9 || 12,13,15,17,20 || 11,14,16,18,19 
      
       



‘-

10

Example
     

       1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18 
     1,5,10,12,17 || 2,6,9,14,19 || 3,8,13,15,20 || 4,7,11,16,18 
     1,3,5,8,10 || 2,4,6,7,9 || 12,13,15,17,20 || 11,14,16,18,19 
     1,3,5,8,10 || 2,4,6,7,9 || 12,13,15,17,20 || 11,14,16,18,19 
     1,2,3,4,5 || 6,7,8,9,10 || 11,12,13,14,15 || 16,17,18,19,20       



‘-

11

Hyper Quicksort
• Hyper quick sort is the implementation of quick sort on a hypercube. 

• In an N dimensional hypercube with number of processors equal to 2^N, any two processors are connected if and only if 
their unique log2 n-bits differ exactly in one position. 

                   



‘-

12

Hyper quick sort Algorithm

• Basically, the algorithm is similar to the parallel algorithm. 

• Each process starts with the sequential quicksort on its local list. 

• Now we can have a better a chance of choosing a pivot which is closer to the median. 

• The processor responsible for choosing the median will pick a median from its local list and broadcast it to all processors. 

• Then we divide into low list and high list and swap between the partner processors. 

• This step is the only different step in hyper quick sort, on each processor the remaining half of the local list and received half list 
are merged into a sorted local list. 

• Finally, we recurse between the upper half and lower half processors. 



‘-

13

Sample Readings:

Data Points 2 4 8 16 32 64 128

64000 0.01151883 0.0072725 0.004509833 0.00328183 0.005636 0.00631 0.00806483

128000 0.021566167 0.01311067 0.0079413 0.0047925 0.0046935 0.0041425 0.018263106

1024000 0.1160203 0.0626567 0.031275167 0.016847167 0.0112013 0.0181873 0.02082483

10000000 1.072375 0.551030833 0.294687833 0.164162667 0.1584645 0.100521 0.14607433

50000000 5.949621 3.034593167 1.5774985 0.864040167 0.611053333 0.6066963 0.6183323

100000000 12.36473 6.55167533 3.307823 1.7924115 1.10729333 1.1035555 1.1529018333



‘-

14



‘-

15

Sample Readings Gustufson’s:

Number of Processors Data Points Time (in seconds)

2 10000000 1.072375

4 20000000 1.17264933

8 40000000 1.249788833

16 80000000 1.427517167



‘-

16

Gustafson’s Plot



‘-

17

Observation:
• Computations become faster as a result of parallelization for large amount of data. 

• When we keep increasing the number of processors, after certain point of time communication overhead between the 
processors increases and the time required for computations also increases. This can be seen from the Amdahl’s plot. 

• Thus, to achieve a better speed up, it is important to select optimum number of processors for any computation.



‘-

18

References:
• Algorithms Sequential and Parallel: A Unified Approach by Russ Miller and Laurence Boxer • 

•  https://www.tutorialspoint.com/parallel_algorithm/parallel_algorithm_sorting.htm  

•  MPI C Documentation 

• http://www.cas.mcmaster.ca/~nedialk/COURSES/4f03/Lectures/quicksort.pdf

http://www.cas.mcmaster.ca/~nedialk/COURSES/4f03/Lectures/quicksort.pdf


‘-

19

                 

Questions?



‘-

20

         Thank You!


