
MAXIMUM SUM SUBSEQUENCE

Mahak Mukhi

Mohana Bhunekar



WHAT DOES THE PROBLEM SAY?

 Determine a subsequence of data set that sums to the maximum value with 
respect to any other subsequence of the data set.

 More formally, if we are given a sequence X = <x0 , x1 ,x2 , … , xn> we are required to 
find a set of indices u and v, u ≤ v, such that the subsequence <xu , xu+1 , … , xv> has 
the largest possible sum, xu + xu+1 + … + xv , among all subsequences of X.

 This problem is non-trivial only if the given sequence has both positive and 
negative values



IS THAT EVEN A THING?

 Protein and DNA sequence analysis
 To locate biologically meaningful segments, e.g. conserved segments , GC-rich regions, 

non-coding RNA genes, and transmembrane segments.

 A common approach is to assign a value to each residue, and then look for consecutive 
subsequences with high sum or average.

 Traffic Monitoring
 Example: Say for a bridge, given the numbers of vehicles entering and exiting at various 

passes, you can determine the busiest routes.



ARCHITECTURE 

 We worked this problem on a Linear Array

 But, we don’t have a Linear Array!
 But we always can simulate the same behavior virtually.

 We wrote the MPI code such that the program behaves as if it were running on a Linear 
Array.

 It comes with a cost though.
 The communication time is more than what is intuitive.



ALGORITHM

 The algorithm that I am considering to implement is from “Algorithms Sequential 
& Parallel: A Unified Approach” by Russ Miller and Laurence Boxer.

 First compute the parallel prefix sums S = {p0 , p1 , . . . , pn−1} of X = {x0, x1, . . . , xn−1}, 
where pi = x0 ⊗. . . ⊗ xi.

 Next, compute the parallel postfix maximum of S so that for each index i, the 
maximum pj, j ≥ i, is determined, along with the value j.

 Let mi denote the value of the postfix-max at position i, and let ai be the 
associated index, i.e., pai = max {pi, pi+1, . . . , pn−1}.



ALGORITHM CONTINUED

 Next, for each i, compute bi = mi − pi + xi, the maximum prefix value of anything to 
the right minus the prefix sum plus the current value.

 Finally, the solution corresponds to the maximum of the bi’s, where u is the index 
of the position where the maximum of the bi’s is found and v = au.



TIME COMPLEXITY

 This algorithm runs in Θ(n) time on a Linear Array.

 And the optimal cost of Θ(n) is achieved with n1/2 processors.



RUNNING TIME

Process\Values 1000 10000 100000 1000000

4(4x1)
0.0142 0.0832 1.1636 12.5648

8(8x1)
0.0271 0.1795 0.7540 19.2160

16(8x2)
0.0301 0.1571 2.8025 27.9722

32(8x4)
0.0306 0.5545 6.7950 92.8327



RUNNING TIME

0

1

2

3

4

5

6

4(4x1) 8(8x1) 16(8x2) 32(8x4)

Process vs Values

1000 10000 100000



RUNNING TIME

0

10

20

30

40

50

60

70

80

90

100

4(4x1) 8(8x1) 16(8x2) 32(8x4)

Process vs Value

1000000



CONCLUSION

 Linear Array is not a very efficient architecture to go with.

 With the increase in no of processes the running time increases too because of the 
communication diameter.

 After a while the communication time completely overshadows the execution 
time.



FUTURE GOALS

 For the rest of the semester, we would like to conduct experiments with even 
larger data.

 In the next phase we plan to work this out on various other architectures as well.

 A comparative analysis would be great! 



ACKNOWLEDGEMENT AND REFERENCES

 “Algorithms Sequential & Parallel: A Unified Approach” by Russ Miller and 
Laurence Boxer

 http://wordaligned.org/articles/the-maximum-subsequence-problem

 “Genomic Sequence Analysis: A Case Study in Constrained Heaviest Segments” 
Kun-Mao Chao

http://wordaligned.org/articles/the-maximum-subsequence-problem


LET’S TALK!

 Session open for discussion



Thank you


