
MAXIMUM SUM SUBSEQUENCE

Mahak Mukhi

Mohana Bhunekar



WHAT DOES THE PROBLEM SAY?

 Determine a subsequence of data set that sums to the maximum value with 
respect to any other subsequence of the data set.

 More formally, if we are given a sequence X = <x0 , x1 ,x2 , … , xn> we are required to 
find a set of indices u and v, u ≤ v, such that the subsequence <xu , xu+1 , … , xv> has 
the largest possible sum, xu + xu+1 + … + xv , among all subsequences of X.

 This problem is non-trivial only if the given sequence has both positive and 
negative values



IS THAT EVEN A THING?

 Protein and DNA sequence analysis
 To locate biologically meaningful segments, e.g. conserved segments , GC-rich regions, 

non-coding RNA genes, and transmembrane segments.

 A common approach is to assign a value to each residue, and then look for consecutive 
subsequences with high sum or average.

 Traffic Monitoring
 Example: Say for a bridge, given the numbers of vehicles entering and exiting at various 

passes, you can determine the busiest routes.



ARCHITECTURE 

 We worked this problem on a Linear Array

 But, we don’t have a Linear Array!
 But we always can simulate the same behavior virtually.

 We wrote the MPI code such that the program behaves as if it were running on a Linear 
Array.

 It comes with a cost though.
 The communication time is more than what is intuitive.



ALGORITHM

 The algorithm that I am considering to implement is from “Algorithms Sequential 
& Parallel: A Unified Approach” by Russ Miller and Laurence Boxer.

 First compute the parallel prefix sums S = {p0 , p1 , . . . , pn−1} of X = {x0, x1, . . . , xn−1}, 
where pi = x0 ⊗. . . ⊗ xi.

 Next, compute the parallel postfix maximum of S so that for each index i, the 
maximum pj, j ≥ i, is determined, along with the value j.

 Let mi denote the value of the postfix-max at position i, and let ai be the 
associated index, i.e., pai = max {pi, pi+1, . . . , pn−1}.



ALGORITHM CONTINUED

 Next, for each i, compute bi = mi − pi + xi, the maximum prefix value of anything to 
the right minus the prefix sum plus the current value.

 Finally, the solution corresponds to the maximum of the bi’s, where u is the index 
of the position where the maximum of the bi’s is found and v = au.



TIME COMPLEXITY

 This algorithm runs in Θ(n) time on a Linear Array.

 And the optimal cost of Θ(n) is achieved with n1/2 processors.



RUNNING TIME

Process\Values 1000 10000 100000 1000000

4(4x1)
0.0142 0.0832 1.1636 12.5648

8(8x1)
0.0271 0.1795 0.7540 19.2160

16(8x2)
0.0301 0.1571 2.8025 27.9722

32(8x4)
0.0306 0.5545 6.7950 92.8327



RUNNING TIME

0

1

2

3

4

5

6

4(4x1) 8(8x1) 16(8x2) 32(8x4)

Process vs Values

1000 10000 100000



RUNNING TIME

0

10

20

30

40

50

60

70

80

90

100

4(4x1) 8(8x1) 16(8x2) 32(8x4)

Process vs Value

1000000



CONCLUSION

 Linear Array is not a very efficient architecture to go with.

 With the increase in no of processes the running time increases too because of the 
communication diameter.

 After a while the communication time completely overshadows the execution 
time.



FUTURE GOALS

 For the rest of the semester, we would like to conduct experiments with even 
larger data.

 In the next phase we plan to work this out on various other architectures as well.

 A comparative analysis would be great! 



ACKNOWLEDGEMENT AND REFERENCES

 “Algorithms Sequential & Parallel: A Unified Approach” by Russ Miller and 
Laurence Boxer

 http://wordaligned.org/articles/the-maximum-subsequence-problem

 “Genomic Sequence Analysis: A Case Study in Constrained Heaviest Segments” 
Kun-Mao Chao

http://wordaligned.org/articles/the-maximum-subsequence-problem


LET’S TALK!

 Session open for discussion



Thank you


