MAXIMUM SUM SUBSEOUENCE

Mahak Mukhi
Mohana Bhunekar

WHAT DOES THE PROBLEM SAY?

- Determine a subsequence of data set that sums to the maximum value with respect to any other subsequence of the data set.
- More formally, if we are given a sequence $X=\left\langle x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ we are required to find a set of indices u and $v, u \leq v$, such that the subsequence $\left\langle x_{u}, x_{u+1}, \ldots, x_{v}\right\rangle$ has the largest possible sum, $x_{u}+x_{u+1}+\ldots+x_{v}$, among all subsequences of X.
- This problem is non-trivial only if the given sequence has both positive and negative values

IS THAT EVEN A THING?

- Protein and DNA sequence analysis
- To locate biologically meaningful segments, e.g. conserved segments , GC-rich regions, non-coding RNA genes, and transmembrane segments.
- A common approach is to assign a value to each residue, and then look for consecutive subsequences with high sum or average.
- Traffic Monitoring
- Example: Say for a bridge, given the numbers of vehicles entering and exiting at various passes, you can determine the busiest routes.

ARCHITECTURE

- We worked this problem on a Linear Array
- But, we don't have a Linear Array!
- But we always can simulate the same behavior virtually.
- We wrote the MPI code such that the program behaves as if it were running on a Linear Array.
- It comes with a cost though.
- The communication time is more than what is intuitive.

ALGORITHM

- The algorithm that I am considering to implement is from "Algorithms Sequential \& Parallel: A Unified Approach" by Russ Miller and Laurence Boxer.
- First compute the parallel prefix sums $S=\left\{p_{0}, p_{1}, \ldots, p_{n-1}\right\}$ of $X=\left\{x_{0}, x_{11}, \ldots, x_{n-1}\right\}$, where $p_{i}=x_{0} \otimes \ldots \otimes x_{i}$.
- Next, compute the parallel postfix maximum of S so that for each index i, the maximum $\mathrm{pj}, \mathrm{j} \geq \mathrm{i}$, is determined, along with the value j .
- Let m_{i} denote the value of the postfix-max at position i, and let a_{i} be the associated index, i.e., $\mathrm{p}_{\mathrm{ai}}=\max \left\{\mathrm{p}_{i,} \mathrm{p}_{\mathrm{i}+1}, \ldots, \mathrm{p}_{\mathrm{n}-1}\right\}$.

ALGORITHM CONTINUED

- Next, for each i, compute $b_{i}=m_{i}-p_{i}+x_{i}$, the maximum prefix value of anything to the right minus the prefix sum plus the current value.
- Finally, the solution corresponds to the maximum of the b_{i} 's, where u is the index of the position where the maximum of the b_{i}^{\prime} 's is found and $v=a_{u}$.

TIME COMPLEXITY

- This algorithm runs in $\Theta(n)$ time on a Linear Array.
- And the optimal cost of $\Theta(n)$ is achieved with $n^{1 / 2}$ processors.

RUNNING TIME

ProcesslValues	1000	10000	100000	1000000
$4(4 \times 1)$	0.0142	0.0832	1.1636	12.5648
$8(8 \times 1)$	0.0271	0.1795	0.7540	
$16(8 \times 2)$	0.0301	0.1571	2.8025	19.2160
$32(8 \times 4)$	0.0306	0.5545	6.7950	27.9722

RUNNING TIME

Process vs Values

RUNNING TIME

Process vs Value

CONCLUSION

- Linear Array is not a very efficient architecture to go with.
- With the increase in no of processes the running time increases too because of the communication diameter.
- After a while the communication time completely overshadows the execution time.

FUTURE GOALS

- For the rest of the semester, we would like to conduct experiments with even larger data.
- In the next phase we plan to work this out on various other architectures as well.
- A comparative analysis would be great!

ACKNOWLEDGEMENT AND REFERENCES

- "Algorithms Sequential \& Parallel: A Unified Approach" by Russ Miller and Laurence Boxer
- http://wordaligned.org/articles/the-maximum-subsequence-problem
- "Genomic Sequence Analysis: A Case Study in Constrained Heaviest Segments" Kun-Mao Chao

LET'S TALK!

- Session open for discussion

Thank you

