
N-Body Simulation

Devanshu Mukherjee

Munish Mehra

CSE 633 Spring 2014

What is N-body Simulation?

Simulation of a dynamical system of particles, usually

under the influence of physical forces, such as gravity.

F= G*m1*m2/(r^2)

Objective

• Simulate the gravitational forces acting between a
number of bodies in space.

• Barnes-Hut Tree algorithm for optimization of the
force calculation.

• Implementation of the project using MPI.

• Comparison of different approaches.

The Barnes-Hut Algorithm

• Speeding up the brute force n-body algorithm is to group
nearby bodies and approximate them as a single body.

• If the group is sufficiently far away, we can approximate
its gravitational effects by using its center of mass.

• Two bodies (x1, y1) of mass ‘m1’, and (x2,y2) of mass ‘m2’.

m = m1 + m2

x = (x1*m1 + x2*m2) / m

y = (y1*m1 + y2*m2) / m

bodies have positions (x1, y1) and (x2, y2), and masses m1 and m2

The Barnes-Hut Algorithm

• It recursively divides the set of bodies into groups by

storing them in a quad-tree.

• The topmost node represents the whole space, and its four

children represent the four quadrants of the space.

The Barnes-Hut Algorithm

The Barnes-Hut Algorithm

• Determine if (s / d) < Θ

• s is the width of the region represented by the
internal node,

• d is the distance between the body and the node’s
center-of-mass

• Θ can change the speed and accuracy of the
simulation. Typically, 0.5.

The Barnes-Hut Algorithm

Constructing the Barnes-Hut tree :

To insert a body b into the tree rooted at node x, use recursive procedure:

• If node x does not contain a body, put the new body b here.

• If node x is an internal node, update the center-of-mass and total mass of x.
Recursively insert the body b in the appropriate quadrant.

• If node x is an external node, subdivide the region further by creating four
children. Then, recursively insert both b and c into the appropriate
quadrant(s).

• Finally, update the center-of-mass and total mass of x.

Our Attempt

1. Master – Worker Configuration:

• Parallel Tree Formation
• Every node reads data from input file.
• Formation of quad-tree at all nodes in parallel.

• Parallel Force Calculation
• Every processor selects bodies from input file based on its

rank.
• Calculate force on the selected bodies and there new

position due to the force.

• Merge Partial Results
• Merge the partial results from all the nodes at master node

to get the final result.
• Broadcast the new dataset to all nodes.

1. Master – Worker Configuration:

1 2 3 4 8 16 32 64 128 256

128 0.00415 0.0034 0.00379 0.00412 0.00658 0.069261 0.007926 1.164081 9.328586 15.090703

1024 0.007804 0.006331 0.006141 0.006481 0.00813 0.01089 0.024016 0.054247 3.547129 9.35108

4,000 1.05145 0.546004 0.367569 0.47367 0.148349 0.084429 0.14190 1.348655 6.092180 10.570122

10,000 7.204272 3.585363 2.414663 1.829134 1.721207 3.879273 11.297868 16.450013 33.001744 70.34019

20,000 28.87630 16.664297 11.29883 9.454216 7.055522 12.517156 13.48926 14.109527 42.71600 91.23014

40,000 125.70631 63.20303 42.38242 33.10332 25.78558 27.124613 36.43922 48.252101 79.216301 114.675226

1. Master – Worker Configuration:

Number of Bodies vs Number of Cores (8 Cores/Node)

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 8 16 32 64 128

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CORES

128 1,024 4,000

1. Master – Worker Configuration:
Time vs No of Cores (8 Cores/Node)

0

50

100

150

200

250

1 2 3 4 8 16 32 64 128 256

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CORES

10,000 20,000 40,000

1. Master – Worker Configuration:
Time vs No of Cores (8 Cores/Node)

1 2 3 4 8 16 32 64 128 256

128 0.01806 0.00616 0.00452 0.00532 0.00325 0.00369 0.00456 0.00379 0.0058 0.00359

1024 0.07366 0.05778 0.0604 0.05033 0.07467 0.07871 0.07971 0.07617 0.07723 0.07723

4000 1.15893 1.13307 1.10315 1.09626 1.09492 1.09624 1.09624 1.09402 1.09466 1.0961

10000 11.6091 7.187 7.1992 14.9769 13.6214 20.1081 8.23125 8.02496 7.73448 7.81518

20000 84.6857 83.6755 82.6016 83.0337 82.21 83.5951 82.9271 48.6264 51.0667 52.4524

40000 378.088 270.424 268.216 280.575 281.261 281.266 279.194 280.503 278.525 278.534

1. Master – Worker Configuration:

Number of Bodies vs Number of Cores (1 Core/Node)

1. Master – Worker Configuration:
Time vs No of Cores (1 Core/Node)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 8 16 32 64 128 256

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CORES

128 1,024 4,000

1. Master – Worker Configuration:
Time vs No of Cores (1 Core/Node)

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 8 16 32 64 128 256

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CORES

10,000 20,000 40,000

2. All to All Configuration:

• Parallel Tree Formation
• Every node reads data from input file.
• Formation of quad-tree at all nodes in parallel.

• Parallel Force Calculation
• Every processor selects bodies from quad-tree based on its

rank.
• Calculate force on the selected bodies and there new

position due to this force.

• Merge Partial Results
• Every node gathers partial result from all the other nodes

using MPI_Allgather.

2. All to All Configuration:

1 2 3 4 8 16 32 64 128 256

1000 0.00314 0.0020 0.00171 0.00199 0.00282 0.004832 0.010829 0.018858 0.043453 0.167657

4000 0.00517 0.0042 0.00339 0.005657 0.00627 0.008842 0.016211 0.031286 0.064436 0.139774

8000 0.05313 0.0640 0.05303 0.052184 0.051377 0.095169 0.176234 0.261428 0.25843 0.225114

10000 0.06300 0.06113 0.06096 0.060151 0.05019 0.036377 0.037995 0.046847 0.130437 0.254299

20000 0.27814 0.2573 0.25487 0.24071 0.10119 0.095223 0.048549 1.10658 1.90124 2.579095

40000 0.56598 0.51989 0.50833 0.50402 0.20842 0.170834 0.19661 0.243217 2.532225 3.993428

100000 1.798 1.30278 1.209313 0.98268 0.42435 0.230418 0.471686 0.759693 4.263693 6.618865

1000000 12.4243 8.60192 6.00739 5.697782 4.69039 3.914725 1.193584 72.843632 273.71508

10000000 71.4634 43.5849 29.95473 21.36642 12.5039 46.167598

2. All to All Configuration:

Number of Bodies vs Number of Cores (8 Cores/Node)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 8 16 32 64 128 256

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CORES

1,000 4,000 8,000 10,000 20,000

2. All to All Configuration:
Time vs No of Cores (8 Cores/Node)

0

50

100

150

200

250

300

350

400

1 2 3 4 8 16 32 64 128 256

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CORES

40,000 100,000 10,00,000

2. All to All Configuration:
Time vs No of Cores (8 Cores/Node)

1 2 3 4 8 16 32 64 128 256

1000 0.00322 0.0029 0.0021 0.0020 0.00367 0.005291 0.012746 0.037138 0.07351 0.60512

4000 0.00497 0.0044 0.00413 0.003879 0.007364 0.010942 0.02389 0.042596 0.092569 0.97594

8000 0.05302 0.07591 0.06739 0.064371 0.06075 0.06753 0.0760231 0.162841 0.277403 1.52179

10000 0.07310 0.07589 0.07089 0.070012 0.07918 0.133816 0.0984027 0.3053662 0.539712 2.71329

20000 0.25491 0.22671 0.21561 0.20683 0.195752 0.184693 0.204915 1.73914 2.6319 4.3891

40000 0.56071 0.53892 0.52593 0.519768 0.37516 0.298305 0.24730 2.13840 3.86032 7.09152

100000 1.8065 1.5491 1.3118 1.1863 1.05293 0.91742 0.76491 3.57921 5.64190 9.42618

1000000 12.5017 9.7859 7.71932 6.89257 5.49581 4.61475 2.14739 83.27491 291.6317

10000000 72.0049 54.7293 41.89721 29.36642 17.83714 62.81534

2. All to All Configuration:

Number of Bodies vs Number of Cores (1 Core/Node)

2. All to All Configuration:
Time vs No of Cores (1 Core/Node)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 8 16 32 64 128 256

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CORES

1000 4000 8000 10000 20000

2. All to All Configuration:
Time vs No of Cores (1 Core/Node)

0

50

100

150

200

250

300

350

1 2 3 4 8 16 32 64 128 256

T
IM

E
 (

S
E

C
O

N
D

S
)

NUMBER OF CORES

40000 100000 1000000 10000000

Observations

1. Master-Worker Configuration:
• Best result for 8 cores per node is achieved with 4-8 cores.

• Best results for 1 core per node:

• For 128 bodies, best result achieved with 3 cores. Increasing

cores after that did affect performance much.

• For 1,024 and 4,000 bodies, best result achieved with 4

cores.

• For 10,000 and 40,000 bodies, best result achieved with 64

cores.

• For 20,000 bodies, best result achieved with 2-3 cores.

Observations
2. All to All Configuration:

• Best results for 8 cores per node :

• For small datasets (1000-8000 bodies) best result is achieved

with 8 cores.

• For medium datasets (10,000 – 1 Million bodies) best result

is achieved with 16 cores.

• For large datasets (10 Million bodies) best result is achieved

with 8 cores.

• Best results for 1 core per node :

• For small datasets (1000-10,000 bodies) best result is

achieved with 4 cores.

• For medium datasets (20,000 – 1 Million bodies) best result

is achieved with 32 cores.

• For large datasets (10 Million bodies) best result is achieved

with 8 cores.

• After the best configuration, adding more cores increases running

time due to communication overhead.

Conclusion

1. Master-Worker Configuration:
• Load Distribution: Better than All-to-All configuration as the

dataset is distributed for force calculation.

• Running time more than All-to-All configuration due to

communication overhead.

• Due to sending of whole dataset from the master to other nodes,

could not run on datasets having more than 40000 bodies.

2. All to All Configuration:
• Load Distribution: Worse than Master-Worker configuration as

each core processes a subset of tree for force calculation and

number of bodies may vary in each part of tree.

• Running time less than Master-Worker configuration due to less

communication overhead as only partial results are sent.

• Due to less communication overhead, running program with

larger datasets was possible.

References

• The Barnes-Hut Algorithm - TOM VENTIMIGLIA & KEVIN

WAYNE - http://arborjs.org/docs/barnes-hut

• Planar Decomposition for Quadtree Data Structure – PINAKI

MAZUMDER

• An Effective Way to Represent Quadtrees – JAMES FOLEY

http://arborjs.org/docs/barnes-hut

