

#### CSE 633 Spring 2014

# **N-Body Simulation**

### Devanshu Mukherjee

Munish Mehra



## What is N-body Simulation?

Simulation of a dynamical system of particles, usually under the influence of physical forces, such as gravity.

 $F = G^*m1^*m2/(r^2)$ 

# Objective

- Simulate the gravitational forces acting between a number of bodies in space.
- Barnes-Hut Tree algorithm for optimization of the force calculation.
- Implementation of the project using MPI.
- Comparison of different approaches.



University at Buffalo The State University of New York REACHING OTHERS

# The Barnes-Hut Algorithm

- Speeding up the brute force n-body algorithm is to group nearby bodies and approximate them as a single body.
- If the group is sufficiently far away, we can approximate its gravitational effects by using its *center of mass*.
- Two bodies (x1, y1) of mass 'm1', and (x2,y2) of mass 'm2'.

m = m1 + m2x = (x1\*m1 + x2\*m2) / m y = (y1\*m1 + y2\*m2) / m

- It recursively divides the set of bodies into groups by storing them in a *quad-tree*.
- The topmost node represents the whole space, and its four children represent the four quadrants of the space.









- Determine if  $(s/d) < \Theta$
- *s* is the width of the region represented by the internal node,
- *d* is the distance between the body and the node's center-of-mass
- Θ can change the speed and accuracy of the simulation. Typically, 0.5.

### Constructing the Barnes-Hut tree :

To insert a body *b* into the tree rooted at node *x*, use recursive procedure:

- If node x does not contain a body, put the new body b here.
- If node x is an internal node, update the center-of-mass and total mass of x. Recursively insert the body b in the appropriate quadrant.
- If node x is an external node, subdivide the region further by creating four children. Then, recursively insert both b and c into the appropriate quadrant(s).
- Finally, update the center-of-mass and total mass of x.





# Our Attempt

### 1. Master – Worker Configuration:

- Parallel Tree Formation
  - Every node reads data from input file.
  - Formation of quad-tree at all nodes in parallel.
- Parallel Force Calculation
  - Every processor selects bodies from input file based on its rank.
  - Calculate force on the selected bodies and there new position due to the force.
- Merge Partial Results
  - Merge the partial results from all the nodes at master node to get the final result.
  - Broadcast the new dataset to all nodes.

## 1. Master – Worker Configuration:



## 1. Master – Worker Configuration:

### Number of Bodies vs Number of Cores (8 Cores/Node)

|        | 1         | 2         | 3        | 4        | 8        | 16        | 32        | 64        | 128       | 256        |
|--------|-----------|-----------|----------|----------|----------|-----------|-----------|-----------|-----------|------------|
| 128    | 0.00415   | 0.0034    | 0.00379  | 0.00412  | 0.00658  | 0.069261  | 0.007926  | 1.164081  | 9.328586  | 15.090703  |
|        |           |           |          |          |          |           |           |           |           |            |
| 1024   | 0.007804  | 0.006331  | 0.006141 | 0.006481 | 0.00813  | 0.01089   | 0.024016  | 0.054247  | 3.547129  | 9.35108    |
|        |           |           |          |          |          |           |           | 1         |           | 3          |
| 4,000  | 1.05145   | 0.546004  | 0.367569 | 0.47367  | 0.148349 | 0.084429  | 0.14190   | 1.348655  | 6.092180  | 10.570122  |
|        |           |           |          |          |          |           |           |           | 10.5      | 2-1        |
| 10,000 | 7.204272  | 3.585363  | 2.414663 | 1.829134 | 1.721207 | 3.879273  | 11.297868 | 16.450013 | 33.001744 | 70.34019   |
|        |           |           |          |          |          |           |           |           | 5         |            |
| 20,000 | 28.87630  | 16.664297 | 11.29883 | 9.454216 | 7.055522 | 12.517156 | 13.48926  | 14.109527 | 42.71600  | 91.23014   |
|        |           |           |          |          |          |           |           | 5         |           | N          |
| 40,000 | 125.70631 | 63.20303  | 42.38242 | 33.10332 | 25.78558 | 27.124613 | 36.43922  | 48.252101 | 79.216301 | 114.675226 |

#### 1. Master – Worker Configuration: Time vs No of Cores (8 Cores/Node)



#### 1. Master – Worker Configuration: Time vs No of Cores (8 Cores/Node)



## 1. Master – Worker Configuration:

## Number of Bodies vs Number of Cores (1 Core/Node)

|       | 1       | 2       | 3       | 4       | 8       | 16      | 32      | 64      | 128     | 256     |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 128   | 0.01806 | 0.00616 | 0.00452 | 0.00532 | 0.00325 | 0.00369 | 0.00456 | 0.00379 | 0.0058  | 0.00359 |
|       |         |         | 10      | 00      | 0_0     |         |         |         |         | 007     |
| 1024  | 0.07366 | 0.05778 | 0.0604  | 0.05033 | 0.07467 | 0.07871 | 0.07971 | 0.07617 | 0.07723 | 0.07723 |
|       |         |         |         |         |         |         |         | 1       |         | 3       |
| 4000  | 1.15893 | 1.13307 | 1.10315 | 1.09626 | 1.09492 | 1.09624 | 1.09624 | 1.09402 | 1.09466 | 1.0961  |
|       |         |         |         |         |         |         |         | くど      | 10.5    | 3 - 1   |
| 10000 | 11.6091 | 7.187   | 7.1992  | 14.9769 | 13.6214 | 20.1081 | 8.23125 | 8.02496 | 7.73448 | 7.81518 |
|       |         |         |         |         |         |         |         |         | 181     | 1       |
| 20000 | 84.6857 | 83.6755 | 82.6016 | 83.0337 | 82.21   | 83.5951 | 82.9271 | 48.6264 | 51.0667 | 52.4524 |
|       |         |         |         |         |         |         |         | 5       | 0       |         |
| 40000 | 378.088 | 270.424 | 268.216 | 280.575 | 281.261 | 281.266 | 279.194 | 280.503 | 278.525 | 278.534 |

#### 1. Master – Worker Configuration: Time vs No of Cores (1 Core/Node)



#### 1. Master – Worker Configuration: Time vs No of Cores (1 Core/Node)





### • Parallel Tree Formation

- Every node reads data from input file.
- Formation of quad-tree at all nodes in parallel.

### • Parallel Force Calculation

- Every processor selects bodies from quad-tree based on its rank.
- Calculate force on the selected bodies and there new position due to this force.
- Merge Partial Results
  - Every node gathers partial result from all the other nodes using **MPI\_Allgather.**



Number of Bodies vs Number of Cores (8 Cores/Node)

|         | 1       | 2       | 3        | 4        | 8        | 16        | 32       | 64        | 128       | 256      |
|---------|---------|---------|----------|----------|----------|-----------|----------|-----------|-----------|----------|
| 1000    | 0.00314 | 0.0020  | 0.00171  | 0.00199  | 0.00282  | 0.004832  | 0.010829 | 0.018858  | 0.043453  | 0.167657 |
|         |         |         |          |          |          |           |          |           |           |          |
| 4000    | 0.00517 | 0.0042  | 0.00339  | 0.005657 | 0.00627  | 0.008842  | 0.016211 | 0.031286  | 0.064436  | 0.139774 |
|         |         |         |          |          |          |           |          |           |           |          |
| 8000    | 0.05313 | 0.0640  | 0.05303  | 0.052184 | 0.051377 | 0.095169  | 0.176234 | 0.261428  | 0.25843   | 0.225114 |
|         |         |         |          |          |          |           |          | 15        |           |          |
| 10000   | 0.06300 | 0.06113 | 0.06096  | 0.060151 | 0.05019  | 0.036377  | 0.037995 | 0.046847  | 0.130437  | 0.254299 |
|         |         |         |          |          |          |           |          |           | 1.        | 2 - 1    |
| 20000   | 0.27814 | 0.2573  | 0.25487  | 0.24071  | 0.10119  | 0.095223  | 0.048549 | 1.10658   | 1.90124   | 2.579095 |
|         |         |         |          |          |          |           |          | P         | 5         | . I'     |
| 40000   | 0.56598 | 0.51989 | 0.50833  | 0.50402  | 0.20842  | 0.170834  | 0.19661  | 0.243217  | 2.532225  | 3.993428 |
|         |         |         |          |          |          |           |          |           |           |          |
| 100000  | 1.798   | 1.30278 | 1.209313 | 0.98268  | 0.42435  | 0.230418  | 0.471686 | 0.759693  | 4.263693  | 6.618865 |
|         |         |         |          |          |          |           | NIN      |           |           |          |
| 1000000 | 12.4243 | 8.60192 | 6.00739  | 5.697782 | 4.69039  | 3.914725  | 1.193584 | 72.843632 | 273.71508 | 2/6      |
|         |         |         |          |          |          |           |          |           |           | JN       |
| 1000000 | 71.4634 | 43.5849 | 29.95473 | 21.36642 | 12.5039  | 46.167598 |          |           |           |          |

### 2. All to All Configuration: Time vs No of Cores (8 Cores/Node)



### 2. All to All Configuration: Time vs No of Cores (8 Cores/Node)



### Number of Bodies vs Number of Cores (1 Core/Node)

|         | 1       | 2       | 3        | 4        | 8        | 16       | 32        | 64        | 128      | 256     |
|---------|---------|---------|----------|----------|----------|----------|-----------|-----------|----------|---------|
| 1000    | 0.00322 | 0.0029  | 0.0021   | 0.0020   | 0.00367  | 0.005291 | 0.012746  | 0.037138  | 0.07351  | 0.60512 |
|         |         |         |          |          |          |          |           |           |          |         |
| 4000    | 0.00497 | 0.0044  | 0.00413  | 0.003879 | 0.007364 | 0.010942 | 0.02389   | 0.042596  | 0.092569 | 0.97594 |
|         |         |         |          |          |          |          |           |           |          |         |
| 8000    | 0.05302 | 0.07591 | 0.06739  | 0.064371 | 0.06075  | 0.06753  | 0.0760231 | 0.162841  | 0.277403 | 1.52179 |
|         |         |         |          |          |          |          |           | <i></i>   |          | ~       |
| 10000   | 0.07310 | 0.07589 | 0.07089  | 0.070012 | 0.07918  | 0.133816 | 0.0984027 | 0.3053662 | 0.539712 | 2.71329 |
|         |         |         |          |          |          |          |           |           | 1.       |         |
| 20000   | 0.25491 | 0.22671 | 0.21561  | 0.20683  | 0.195752 | 0.184693 | 0.204915  | 1.73914   | 2.6319   | 4.3891  |
|         |         |         |          |          |          |          |           | 2         | くの       |         |
| 40000   | 0.56071 | 0.53892 | 0.52593  | 0.519768 | 0.37516  | 0.298305 | 0.24730   | 2.13840   | 3.86032  | 7.09152 |
|         |         |         |          |          |          |          |           |           |          | _       |
| 100000  | 1.8065  | 1.5491  | 1.3118   | 1.1863   | 1.05293  | 0.91742  | 0.76491   | 3.57921   | 5.64190  | 9.42618 |
|         |         |         |          |          |          |          |           |           | UU .     | $\sim$  |
| 1000000 | 12.5017 | 9.7859  | 7.71932  | 6.89257  | 5.49581  | 4.61475  | 2.14739   | 83.27491  | 291.6317 | 216     |
|         |         |         |          |          |          |          |           | 1         | $\sim$   | JN      |
| 1000000 | 72.0049 | 54.7293 | 41.89721 | 29.36642 | 17.83714 | 62.81534 |           |           |          |         |

### 2. All to All Configuration: Time vs No of Cores (1 Core/Node)



### 2. All to All Configuration: Time vs No of Cores (1 Core/Node)



# Observations

- 1. Master-Worker Configuration:
  - Best result for 8 cores per node is achieved with 4-8 cores.
  - Best results for 1 core per node:
    - For 128 bodies, best result achieved with 3 cores. Increasing cores after that did affect performance much.
    - For 1,024 and 4,000 bodies, best result achieved with 4 cores.
    - For 10,000 and 40,000 bodies, best result achieved with 64 cores.
    - For 20,000 bodies, best result achieved with 2-3 cores.

# Observations

### 2. All to All Configuration:

- Best results for 8 cores per node :
  - For small datasets (1000-8000 bodies) best result is achieved with 8 cores.
  - For medium datasets (10,000 1 Million bodies) best result is achieved with 16 cores.
  - For large datasets (10 Million bodies) best result is achieved with 8 cores.
- Best results for 1 core per node :
  - For small datasets (1000-10,000 bodies) best result is achieved with 4 cores.
  - For medium datasets (20,000 1 Million bodies) best result is achieved with 32 cores.
  - For large datasets (10 Million bodies) best result is achieved with 8 cores.
- After the best configuration, adding more cores increases running time due to communication overhead.

# Conclusion

#### 1. Master-Worker Configuration:

- Load Distribution: Better than All-to-All configuration as the dataset is distributed for force calculation.
- Running time more than All-to-All configuration due to communication overhead.
- Due to sending of whole dataset from the master to other nodes, could not run on datasets having more than 40000 bodies.
- 2. All to All Configuration:
  - Load Distribution: Worse than Master-Worker configuration as each core processes a subset of tree for force calculation and number of bodies may vary in each part of tree.
  - Running time less than Master-Worker configuration due to less communication overhead as only partial results are sent.
  - Due to less communication overhead, running program with larger datasets was possible.

## References

- The Barnes-Hut Algorithm TOM VENTIMIGLIA & KEVIN WAYNE - <u>http://arborjs.org/docs/barnes-hut</u>
- Planar Decomposition for Quadtree Data Structure PINAKI MAZUMDER
- An Effective Way to Represent Quadtrees JAMES FOLEY