Construction Gene coexpression Network

CSE 633

Nan Du

1 Dec 2011

The Problem

Process

- 1.Calculate the Correlation Coefficient between each gene pair
- 2. Eliminate the indirect interaction between genes
- 3. Keep Eliminating the edges between genes to meet the scale-free phenomenon

Step 1

- **≻**Correlation Coefficient
- **A** correlation coefficient indicates the extent to which two variables are related.
- **❖It can range from -1.0 to +1.0**
- **A** positive correlation coefficient indicates a positive relationship, a negative coefficient indicates an inverse relationship
- **Correlation CANNOT be equated with causality.**

Step 2

Remove the indirect influence between genes. Look at every triplet and remove the weakest link.

I(A,C) < min[I(A,B), I(B,C)]

Step 3

A scale-free network is a network whose degree distribution follows a power law. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as $P(k) \sim ck^{-\gamma}$

Gene Connectivity

For unweighted networks=number of direct neighbors
For weighted networks= sum of connection strengths to other nodes

Then a fitting index R^2 is used to measure the scale-free topology degree which is the correlation between $\log(p(k))$ and $\log(k)$ (where P(k) notes the fraction of nodes in the network having k connections to other nodes goes for large values of k). If R^2 of the model approaches 1, then there is a straight line relationship between $\log(p(k))$ and $\log(k)$.

Process 3

Why Parallel?

Our algorithm's complexity is $O(N^2M^2)$, where N is the number of genes and M is the number of samples.

In our case, M is a constant which equals to 24

Parallel Solution

- •Assign each processor with the whole data.
- •In each slave processor, calculate parts of the Correlation Coefficient and output an array as the result.
- •The master processor will gather the results and performs sequential computations.

Parallel Solution

Total running time
When nodes=1 ppn=2 under different data size

Total running time and speedup When nodes=2 ppn=2 under different data size

Total running time and speedup
When nodes=3 ppn=2 under different data size

Show them together

When we fix the # Gene as 1500

Node #	The # Gene for Each Node		
1	1500		
2	750		
4	375		
6	250		
8	188		
10	150		
12	125		
16	94		
24	63		

Total running time and speedup Fixed the gene#=1500 and ppn=2,change the # node

Total running time and speedup Fixed the gene#=1500 node#=2,change the ppn

# Node	ppn	# Core	Time
2	4	8	0.240237
4	2	8	0.413974
2	6	12	0.178385
6	2	12	0.332451
2	8	16	0.222706
8	2	16	0.316832

Questions?

Thank you

