Construction Gene coexpression Network

CSE 633

Nan Du
1 Dec 2011

The Problem

Gene Expression Data

Process

1.Calculate the Correlation Coefficient between each gene pair
2. Eliminate the indirect interaction between genes
3. Keep Eliminating the edges between genes to meet the scale-free phenomenon

Step 1

$>$ Correlation Coefficient

* A correlation coefficient indicates the extent to which two variables are related.
* It can range from -1.0 to $\mathbf{+ 1 . 0}$
*A positive correlation coefficient indicates a positive relationship, a negative coefficient indicates an inverse relationship
* Correlation CANNOT be equated with causality.

Step 2

* Remove the indirect influence between genes. Look at every triplet and remove the weakest link.

$$
\begin{aligned}
& \text { I } \mathrm{A}, \mathrm{C})<\min [\mathrm{I}(\mathrm{~A}, \mathrm{~B}), \mathrm{I}(\mathrm{~B}, \mathrm{C})]
\end{aligned}
$$

Step 3

A scale-free network is a network whose degree distribution follows a power law. That is, the fraction $\mathrm{P}(\mathrm{k})$ of nodes in the network having k connections to other nodes goes for large values of k as $P(k) \sim c k^{-\gamma}$

Gene Connectivity

For unweighted networks=number of direct neighbors
For weighted networks= sum of connection strengths to other nodes
Then a fitting index R^{2} is used to measure the scale-free topology degree which is the correlation between $\log (\mathrm{p}(\mathrm{k}))$ and $\log (\mathrm{k})($ where $P(k)$ notes the fraction of nodes in the network having k connections to other nodes goes for large values of k). If R^{2} of the model approaches 1 , then there is a straight line relationship between $\log (p(k))$ and $\log (\mathrm{k})$.

Process 3

cseebuffalo

Why Parallel?

Our algorithm's complexity is $O\left(N^{2} M^{2}\right)$, where N is the number of genes and M is the number of samples.

In our case, M is a constant which equals to 24

University at Buffalo The State University of New York

Parallel Solution

-Assign each processor with the whole data.
-In each slave processor, calculate parts of the Correlation Coefficient and output an array as the result.
-The master processor will gather the results and performs sequential computations.

Parallel Solution

互

University at Buffalo The State University of New York

Result

Total running time

When nodes=1 ppn=2 under different data size

Result

Total running time and speedup
 When nodes=2 ppn=2 under different data size

Result

Total running time and speedup
 When nodes=3 ppn=2 under different data size

Result

Show them together

Result

When we fix the \# Gene as 1500

Node \#	The \# Gene for Each Node
1	1500
2	750
4	375
6	250
8	188
10	150
12	125
16	94
24	63

Result

Total running time and speedup
Fixed the gene\#=1500 and ppn=2, change the \# node

Result

Total running time and speedup

Fixed the gene\#=1500 node\#=2,change the ppn

Result

\# Node	ppn	\# Core	Time
2	4	8	0.240237
4	2	8	0.413974
2	6	12	0.178385
6	2	12	0.332451
2	8	16	0.222706
8	2	16	0.316832

Result

W University at Buffalo The State University of New York
cseebuffalo

Questions?

Thank you

