## A PARALLEL APPROACH TO THE STABLE MATCHING PROBLEM

Naveen Udhayasankar, CSE 633 Parallel Algorithms, Final Presentation


## What is the stable matching problem?

Given N men and N women, where each person has ranked all members of the opposite gender in order of preference, marry the men and women together such that there are no two people of opposite gender who would both rather have each other than their current partners. If there are no such people, all the marriages are "stable".

## What is the stable matching problem?

Consider the following example.

- Let there be two men m 1 and m 2 and two women w 1 and w 2 .
- Let m 1 's list of preferences be $\{\mathrm{w} 1, \mathrm{w} 2\}$
- Let m2's list of preferences be $\{w 1, w 2\}$
- Let w1's list of preferences be $\{\mathrm{m} 1, \mathrm{~m} 2\}$
- Let w2's list of preferences be $\{m 1, m 2\}$

The matching $\{\{m 1, w 2\},\{m 2, w 1\}\}$ is not stable because $m 1$ and $w 1$ would prefer each other over their assigned partners. The matching $\{m 1, w 1\}$ and $\{m 2, w 2\}$ is stable because there are no two people of opposite sex that would prefer each other over their assigned partners.

## Forming a stable matching

- Gale Shapley Algorithm (1962)
- David Gale and Lloyd Shapley proved that, for any equal number of men and women, it is always possible to solve the stable matching problem.
- Always favors one gender over the other.
- Initially all persons are free.
- The men start off by proposing the woman at the beginning of their preference list.
- The women receive the proposal and accept it if they are free. Else, they compare it with their existing proposal and select the best out of the two proposals.
- The result of the algorithm doesn't depend on the order in which the men/the women propose.

University at Buffalo The State University of New York

## Gale Shapley Algorithm

A sequential version of the Gale
Shapley algorithm, in which the men propose first.

```
Algorithm 1 Gale - Shapley Algorithm for stable matching
    \(m \epsilon M \leftarrow\) free
    \(w \epsilon W \leftarrow\) free
    while \(\exists\) free man \(m\) who has a woman \(w\) to propose to do
        \(w \leftarrow\) first woman on m's list to whom \(m\) hasn't yet proposed
        if \(\exists\) some pair \(\left(m^{\prime}, w\right)\) then
            if w prefers m to \(\mathrm{m}^{\prime}\) then
                \(m^{\prime} \leftarrow\) free
                    \((m, w) \leftarrow\) engaged
            else
                \(\left(m^{\prime}, w\right) \leftarrow\) engaged
            end if
        end if
    end while
```


## Proof of termination

## Proposition:

The algorithm described for stable matching terminates.

## Proof:

Assume there are n men and n women involved. A man must propose to at most $n$ women before being accepted or being rejected by the final one. So at most $n^{2}$ proposals may occur, after which the algorithm terminates.

## Proof of engagement

## Proposition:

At the end of the algorithm, all men/women are married.

## Proof:

- Assume towards contradiction that $m$ is an unmarried man at the termination of the algorithm.
- Then there is some unmarried woman $w$, since there are the same number of men and women and no one can be married to more than one person.
- So if a woman gets even one proposal, she is married when the algorithm terminates. This means that the woman received no proposals.
- But, in order for the algorithm to terminate man m must be married, which he is not, or have been rejected by every woman, including w .
- So m must have proposed to w , which is a contradiction. So m must be married at the termination of the algorithm.


## Proof of stable matching

## Proposition:

The described algorithm produces a stable matching.

## Proof:

- Assume towards contradiction that the algorithm produces an unstable matching for an instance of the stable marriage problem.
- Then there exists a pair, m, w', who are not matched by the algorithm, such that $m$ prefers $w$ ' to his assigned partner $w$, and $w^{\prime}$ prefers $m$ to her assigned partner $\mathrm{m}^{\prime}$.
- Then m proposed to w' before he proposed to w, since w' is before w on his list.
- But a woman can only reject a man if she receives a proposal from a man she prefers.
- So if a woman rejects a man, she prefers her final marriage partner to the rejected man. So w' prefers $m$ ' to $m$, which is a contradiction. So the G-S algorithm produces a stable matching.


## Gale Shapley Algorithm Parallelized

## A parallel version of the Gale Shapley

 algorithm.```
Algorithm 2 A parallelized Gale - Shapley Algorithm for stable matching
    if master process then
        Send preference lists to male and female processes
        Listen for termination messages from female processes
        if # women that are not engaged then
            Terminate the algorithm
        end if
    else if male process then
        Listen for incoming messages
        if message is from master then
        Receive preference list
        else if message is from female process then
        Propose to the next preferred woman
    end if
    Propose to the first preferred woman
    else if female process then
    Listen for incoming messages
    if message is from master then
        Receive preference list
        else if message is from male process then
            if Not engaged then
                Accept proposal
            else if check if received proposal is better than current engagement
    then
            Accept received proposal
        else
            Retain current engagement
        end if
        Send signal to master that engagement is successful
        end if
    end if
```


## Gale Shapley Algorithm Parallelized

- There are N men and N women.
- A master-worker approach is followed, there are 2 N workers and 1 master, hence, total processes in $2 \mathrm{~N}+1$.
- The master sends out the preference lists and termination messages to the male and female processes and listens for termination messages from the female processes.
- The male processes send out proposal messages to the female processes and listen for termination messages from the master or rejection messages from the female processes.
- The female processes listen for preference lists from the master or proposal messages from the male processes and send out termination messages to the master indicating engagement or rejection messages to the male processes.


## Runtime comparison

| $\mathbf{N}$ | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{1 0}$ | $\mathbf{2 5}$ | $\mathbf{5 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{1 6 0}$ | $\mathbf{2 0 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sequential | 0.00035 | 0.00037 | 0.0009 | 0.0029 | $\mathbf{0 . 0 4 1}$ | $\mathbf{0 . 1 9}$ | 0.27 | 0.21 | 0.14 |
| parallel | 0.0056 | 0.0064 | 0.0052 | 0.0086 | $\mathbf{0 . 0 3 3}$ | $\mathbf{0 . 1 7}$ | 0.53 | 0.80 | OOM |

## Runtime comparison



## Learnings

- This is a really naïve implementation that does not provide considerable speedup.
- The amount of work done in communicating the data between the master and the workers is heavier than the actual computation.
- The computations in the sequential code are just unit time computation, except for a few like finding the indices.
- The parallel code, however, spends more time in communicating the data along with the unit time computations.
- The runtime also depends on the preference lists of the men and the women.
- The worst-case runtime is $\mathrm{O}\left(\mathrm{N}^{2}\right)$.


## Story so far...

- The speedup provided by the parallelization is not significant.
- Infact, the runtimes for the parallel algorithm gets worse as the number of processes increase.
- Since, the communication is too expensive when compared to the amount of work to be done, the stable matching problem is best solved sequentially.


## Ordering inputs

- The runtime also depends on the order of the preference lists.
- When the lists are ordered randomly, the sequential code outperforms the parallel implementation.
- A pattern seems to emerge when there is some inherent ordering to the preference lists of both the men and women.
- This is especially true in social networks, where the graph nodes are connected based on the similarities and/or differences between them.



## Ordering inputs - Worst case scenario

| $\mathbf{N}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{2 5 4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sequential | 0.011 | 0.088 | 0.524 | 1.886 | 5.683 | 10.216 |
| parallel | 0.010 | 0.010 | 0.026 | 0.076 | 0.175 | 0.327 |

## Ordering inputs - Worst case scenario



## Ordering inputs - Half Rotated

| $\mathbf{N}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{2 5 4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sequential | 0.012 | 0.116 | 0.64 | 2.271 | 6.088 | 10.185 |
| parallel | 0.007 | 0.006 | 0.026 | 0.086 | 0.185 | 0.332 |

## Ordering inputs - Half Rotated



## Ordering inputs - Shifted each step

| $\mathbf{N}$ | $\mathbf{3 0}$ | $\mathbf{5 0}$ | $\mathbf{1 0 0}$ | $\mathbf{1 5 0}$ | $\mathbf{2 0 0}$ | $\mathbf{2 5 4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sequential | 0.001 | 0.002 | 0.005 | 0.01 | 0.014 | 0.022 |
| parallel | 0.023 | 0.006 | 0.022 | 0.066 | 0.146 | 0.266 |

## Ordering inputs - Shifted each step



## Speedup



## Profiling results - Sequential



University at Buffalo The State University of New York

## Profiling results - Parallel

```
##IPMV2.0.6########################################################
#
# command : ./gs_parallel sample_inputs.txt
# start : Thu May 12 09:41:44 2022 host : naveen-VirtualB
# stop : Thu May 12 09:41:55 2022 wallclock : 10.62
# mpi_tasks : 51 on 1 nodes %comm : 56.07
# mem [GB] : 0.80
#
\begin{tabular}{llrrrr} 
\# & [total] & <avg> & min & max \\
\# wallclock & : & 523.99 & 10.27 & 9.99 & 10.62 \\
\# MPI & \(:\) & 293.82 & 5.76 & 5.18 & 6.22 \\
\# \%wall & \(\vdots\) & & & & \\
\# MPI & \(\vdots\) & & 56.08 & 49.84 & 60.96 \\
\# \#calls & \(:\) & & & & \\
\# MPI & \(:\) & 2407246 & 47200 & 28510 & 59469 \\
\# mem [GB] & \(:\) & 0.80 & 0.02 & 0.01 & 0.02
\end{tabular}
#
#####################################################################
```

University at Buffalo The State University of New York

## What makes the parallel implementation slower?

Communication


Random Inputs

Ordered Inputs

## Conclusion

- The runtime of the algorithm greatly depends on the order of the inputs.
- There is a significant speedup provided by the parallelization when there is some inherent ordering in the inputs.
- This is true in case of real world matching, but at the same time random inputs are more likely.
- During randomized inputs, the algorithm spends more time in communicating the data between the processors which is expensive when compared to sequential iteration which renders the parallel implementation ineffective in such scenarios.

