
Computing RMSD using GPGPUs

By Nicolas Barrios

NVIDIA CUDA Primer

Parallel Computing platform for NVIDIA GPUs

A Bit of History:

● Games and other graphics heavy applications often relied on the graphics
processor to do the heavy lifting.

● Researchers/scientists said, “Why not use the graphics processor for our
computationally heavy workloads? After all, they’re quite similar.”

● Shortly after, NVIDIA officially release the CUDA platform with the express
purpose of boosting the performance of these workloads

CUDA Programming Model

While CPUs are developed with general computing in mind, GPUs are purpose-built
(down at the silicon level) to run massively parallel applications.

Many, many more compute cores than a traditional CPU.

CUDA is an extension of C/C++ (there’s also a Fortran extension).

CUDA defines keywords and syntax to easier call GPU functions (called “kernels”)
with multiple threads.

A Simple Example of CUDA

// Example from
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#kernels
__global__ void VecAdd(float* A, float* B, float* C){
 int i = threadIdx.x;
 C[i] = A[i] + B[i];
}
int main(){
 ...
 // Kernel invocation with N threads
 VecAdd<<<1, N>>>(A, B, C);
 ...
}

What’s RMSD?

Root-mean-square deviation, also known as root-mean-square error (RMSE)

In the bioinformatics space, it is used to measure the average distance between
sets of points defining proteins or other biological structures.

Where d_i is the distance between point i and its corresponding point in the other
set:

Okay so, RMSD + CUDA?

Yes! Thanks to Wolfgang Kabsch.

Kabsch Algorithm: Computes an optimal rotation matrix that minimizes the RMSD
between sets of points.

Looking at the sets of points as two matrices, we can take advantage of the matrix
multiplication processing that GPUs are built for.

Kabsch Rundown

1. Translate both sets of points in such a way that their centroids end up at the
origin of the imposed coordinate system

a. i.e. with 3D points, we want each centroid to end up at (0, 0, 0)

2. Compute the covariance matrix:
a. Requires a matrix transpose and a matrix multiplication!

3. Compute the optimal rotation matrix
a.
b. Requires 2 multiplications, a transpose, and inverse computations!!

4. Rotate both sets of points using R
5. Compute RMSD

Project Implementation

● Use CUDA’s float3 vector type to simplify initialization and conceptualization
of the N x 3 matrices that Kabsch necessitates

● Shared Memory: In reduction and matrix multiplication kernels, allocate
enough shared memory for the threads to only access global memory once

○ I.e. in matrix multiplication, allocate enough memory to store an entire column of B in the
calculation of A x B.

● Each kernel (reducing, transposing, translating, matrix multiplication) is
wrapped to be used within C++ files, where the wrapper calculates the
necessary # of blocks and # of threads based on the size of the input.

Benchmarking Configuration

● System Specs
○ Intel i7-7700k
○ NVIDIA GTX 1060M 6GB
○ 16GB of Memory

● Compilation Options:
○ NVFLAGS := -Werror=all-warnings -gencode arch=compute_61,code=sm_61 -rdc=true

○ CXXFLAGS := -Wall -Wextra -Werror -std=c++11

● Generic make rules:
○ bin/test_%: src/test_%.*

$(NVCC) $^ -I$(INC_DIR) -o $@ $(NVFLAGS) -Xcompiler $(subst

$(SPACE),$(COMMA),$(CXXFLAGS))

○ test_%: bin/test_%

./$^

Results

Matrix Calculation Runtimes (ms)

Width Naive GPU Simple GPU Combined
512 0.0342128 0.325414 0.409593

1024 0.0658724 0.515943 0.516168
2048 0.116834 0.552264 0.437346
4096 0.274821 0.516756 0.612387
8192 0.438935 0.760053 0.796006

16384 0.89224 1.01975 1.19057
32768 1.79857 1.6719 1.87057
65536 3.47928 4.31061 3.97394

131072 6.9812 7.24666 7.29523
262144 14.7412 14.9196 14.2032
524288 32.5542 26.4642 27.2958

1048576 68.4355 53.2135 53.56

Results (cont.)
Speedup vs Naive

Width GPU Simple GPU Combined
512 0.1051362265 0.08352877124

1024 0.1276737934 0.1276181398
2048 0.2115546188 0.2671431773
4096 0.5318196596 0.4487701405
8192 0.5775057792 0.551421723

16384 0.8749595489 0.7494225455
32768 1.075764101 0.9615090587
65536 0.8071433045 0.8755240391

131072 0.9633679516 0.9569540645
262144 0.9880425749 1.037878788
524288 1.230122203 1.192645022

1048576 1.28605523 1.27773525

Results (cont.)

Results (cont.)

Conclusions

Current implementation does marginally better at large enough N, more than likely
due to heavy communication costs at smaller sizes

Testing-friendly wrappers have an insignificant impact on the average runtime

GPU implementations exhibit large amounts of CPU thrashing, most likely to due
repeated re-initializations of starting state with device memory.

Moving Forward:

● Complete Kabsch RMSD calculations require an implementation of the sq. root
of a matrix

● Move initialization towards a CUDA kernel to reduce, and perhaps remove,
CPU thrashing.

Thoughts?
Questions? Ask

Away!

References

1. CUDA Programming Guide
a. https://docs.nvidia.com/cuda/cuda-

c-programming-guide/index.html
2. Algorithm

a. Kabsch, Wolfgang (1976). "A
solution for the best rotation to
relate two sets of vectors". Acta
Crystallographica. A32 (5): 922.
Bibcode:1976AcCrA..32..922K.
doi:10.1107/S0567739476001873.

3. Wikipedia (for the RMSD image)
a. https://en.wikipedia.org/wiki/Root-

mean-square_deviation_of_atomic
_positions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions
https://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions
https://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions

