
K Means Clustering
in Parallel
Instructor- Dr. Russ Miller
Presenter - Nilesh Dogra
CSE 633 - Parallel Algorithms
Date - 05/10/2022

What is K means Clustering
1. Unsupervised machine learning algorithm.

2. K is the number of clusters.

Working of Sequential K means
Clustering
1. Select random K cluster points from all the numbers which are

called centroids.

2. Assign remaining numbers to points nearest to it’s K cluster

point.

3. Re-calculate K cluster points by calculating mean of the each

cluster.

4. Repeat steps 2 - 3

5. Stop when there is no change in clusters.

Example of K means clustering
Numbers = {2,5,8,6,10,7,9,1,3,4}

K = 2

Random Cluster points = 4, 8

Cluster 1 = {2,5,6,1,3,4}

Cluster 2 = {8,10,7,9}

New Mean or Cluster points

 K1 = 3, K2 = 8

Cluster 1 = {2,5,1,3,4}

Cluster 2 = {8,6,10,7,9}

New Mean or Cluster Points

K1 = 3, K2 = 8

Cluster 1 = {2,5,1,3,4}

Cluster 2 = {8,6,10,7,9}

No change in clusters

Stop Algorithm

Parallel K means clustering

1.Divide N data across each node equally.

2.Randomly select K cluster points(Centroids) on each node.

3.Allocate N to closest centroid K.

4.Calculate new centroids and broadcast it to across each node.

5.Allocate N to closest cluster points across all centroids.

6.Repeat till there are no transfers of points between clusters.

Working of Parallel K Means
Algorithm
Understanding the flow of model with example:

Initials - Total Clusters = 256, Total Data - 128*128 = 16384 ,
Processors = 4, Range - 1024

Initially each Processor will divide data equally among themselves.

Each Processor = 4096 data

Processor 1 Processor 2 Processor 3 Processor 4

[22, 865, 541, 912, 34, 45 ….] 16384 data with each number between
1 and 1024

1 of 4 processors:

Each processor centroid count = Total centroid/Processors = 256/4 = 64

We will be initializing centroid of all processors by step.

1st Centroid point = 1.0

2nd Centroid point = Earlier Centroid + (1024/256) = 5.0 and so on till last
processor’s last centroid mean.

256th Centroid point = Earlier Centroid + (1024/256)

Why not random?

Initial Centroids = 64,
Each Centroid initialized with
mean

Now once all centroids are initialized, each processors in parallel will work on their data.

Now each value in each centroid of all Processors will calculate their closest distance centroid, could be in
another processor or another centroid of same processor.

Once it’s done we will send and receive values based on the above step.

Re calculate Centroids by calculating means of clusters.

Broadcast and Receive the means for all centroids.

Repeat these steps till we get same Centroid Means for 2 Iterations.

Proc 1 - Assign 4096 data
points to its centroid based
on its closest distance

Proc 2 - Assign 4096 data
points to its centroid based
on its closest distance

Proc 3 - Assign 4096 data
points to its centroid based
on its closest distance

Proc 4 - Assign 4096 data
points to its centroid based
on its closest distance

Broadcasting of Centroids
Send and Receive Centroids

P1 - Sending mean of its
centroids and receiving
means of other
centroids.

P4 - Sending mean of its
centroids and receiving
means of other
centroids.

P3 - Sending mean of its
centroids and receiving
means of other
centroids.

P2 - Sending mean of its
centroids and receiving
means of other
centroids.

Results
So there were multiple experiments done with different data
size,range,clusters.

Let’s analyse the results and what we have inferred from it.

1. For 512*512 data, 256 clusters

Range - 1024

Note - 256 achieved by running 2 tasks for 128 processors

Processors Time

2 39.313
4 21.522
8 10.872
16 5.418
32 2.313
64 1.836
128 1.554
256 1.521

2. For 512*512 data, 256 clusters

Range - 10240

Processors Time

2 255.006
4 132.319
8 67.878
16 34.89
32 22.636
64 12.124
128 10.315
256 9.682

3. Now we will calculate the times for same data 512*512, Clusters - 128, 256, 512

Range - 10240

Processors 128 Cluster 256 Cluster 512 Cluster

2 314.167 255.006 250.067
4 165.232 132.319 128.38
8 87.03 67.878 66.56
16 45.372 34.89 35.187
32 24.182 22.636 18.326
64 15.838 12.124 11.433
128 13.878 10.315 9.975

3. Data 512*512, Clusters - 128, 256, 512. Range - 10240

3. Data 512*512, Clusters - 128, 256, 512. Range - 10240

4. For 1024*1024 = Million data points, 512 clusters

Range - 10240

Processors Time

2 1576.176
4 810.624
8 430.87
16 226.548
32 128.811
64 79.296
128 68.989

4. For 1024*1024 = Million data points, 512 clusters

Range - 10240

Processors Time

2 1576.176
4 810.624
8 430.87
16 226.548
32 128.811
64 79.296
128 68.989

Inferences
1. During above experiments, till 64 processors the speedup

increases, but after 64, speedup starts to plateau.

2. As we increase the range of numbers, this effects the time as

well, even if we have same number of data points with same
clusters.

3. 64 processors was the optimal count for processors when we

had the data in range 10240.

4. 32 processors was optimal for 1024 range of data, depending

on range of data we have to decide the count of processors.

5. When we increased the data size to million, 64 was still the

optimal processor count.

Challenges
1. Getting access of high count of nodes.

2. To find optimal parameters

3. Testing the algorithm

4. Performing various iterations using different parameters

(Different clusters, Range of data, Size of data)

References
1. Algorithms Sequential and Parallel: A Unified Approach

(Dr. Russ Miller, Dr. Laurence Boxer).

2. https://ubccr.freshdesk.com/support/solutions/folders/1300000

1591

3. Dr. Matthew Jones slides and lectures.

4. Google for MPI Related queries.

https://ubccr.freshdesk.com/support/solutions/folders/13000001591
https://ubccr.freshdesk.com/support/solutions/folders/13000001591

 Thank You

