
String	Matching	using	MPI
CSE633	Spring	2019

PRESENTED	BY	NIRANJAN MIRASHI

UNDER	THE	GUIDANCE	OF	DR.	RUSS	MILLER	AND	DR.	MATT	JONES

CSE633

DATE	– 04/25/19



Problem	Definition
• Execute	string	matching	in	parallel	on	a	very	large	string	on	a	
number	of	processors.

• Compare	serial	execution	time	and	parallel	execution	time.



APPLICATIONS	OF	STRING	MATCHING

• DNA	SEQUENCING/BIO-INFORMATICS
• PLAGIARISM	DETECTION
• SEARCH	ENGINES
• INFORMATION	RETRIEVAL
•DIGITAL	FORENSICS	AND	MANY	MORE..



SERIAL	EXECUTION	- KMP
• A	linear	time	algorithm	that	solves	the	string	matching	
problem	by	preprocessing	P	in	Θ(m)	time.
•Main	idea	is	to	skip	some	comparisons	by	using	the	
previous	comparison	result.	
•Uses	an	auxiliary	array	π	that	is	defined	as	the	following:	
π[i]	is	the	largest	integer	smaller	than	i such	that	P1	.	.	.	Pπ[i]	
is	a	suffix	of	P1	.	.	.	Pi



Fig:	KMP	String	Matching



SERIAL	EXECUTION	TIME
• Test	Parameters:

String	length	(d)	=	26	million

Pattern	length	=	9

INPUT	SIZE TIME	(in	seconds)
d 11.245926
d/2 5.65653
d/4 2.83191
d/8 1.3945
d/16 0.19012
d/32 0.18152
d/64 0.17134
d/128 0.09087



Serial	Time	Visualization



PARALLEL	STRING	MATCHING
• Divide	and	Conquer
• The	main	goal	here	is	to	divide	the	string	equally	among	all	
the	processors	and	to	execute	a	string	matching	algorithm.
•We	the	execute	a	serial	string	matching	algorithm	on	these	
sub-strings.



Algorithm
1.	Distribute	pattern	to	each	processor

2.	Divide	string	in	a	way	that	each	processor	has	‘d/n’	of	string,	where	d	=	string.

3.	Implement	KMP	serially.	Keep	a	count	of	pattern	occurrences.

4.	If	partial	pattern	in	one	processor,	send	length	of	partial	pattern	to	next	processor.	

5.	If	processor	receives	a	message	containing	length,	check:
◦ pattern[len(string)-len(partial_string)]	at	the	start	of	its	own	respective	sub-string.
◦ If	length	matches,	give	current	index	- length(pattern)	as	output	and	increment	count.
6.	Once	the	above	computation	is	done,	compute	prefix	sum	of	counts	of	all	processors.	As	
a	result,	processor	n	will	have	the	total	count.	Broadcast	total	count.
7.	Output	total	count,	execution	time.



Sample	Output





Results



- String	of	fixed	length			
of	26	million	chars.

Test-case	1	:

Nodes Time
2 5.912754
4 2.81644
8 1.420432
16 0.66441
32 0.34165
64 0.17203
128 0.07168
256 0.05385



Speed-up



- String	of	variable			
length.
- Size	increases	with	
number	of	processors.

Test-case	2	:

Nodes Time
2 0.048823
4 0.06
8 0.068705
16 0.066502
32 0.0608685
64 0.050034
128 0.05557
256 0.05385



Challenges
•The	major	task	was	to	sequence	processor	communication	
efficiently.

• Another	major	task	was	to	generate	such	a	long	string	and	edit	it.

• Time	taken	to	process	data	on	256	nodes	was	unpredictable.
• ‘mpi4py’	being	recently	developed,	a	deep	insight	on	the	package	is	
not	available.	



Conclusion
• Time	for	executing	a	very	long	string	of	characters	decreased	
exponentially	with	number	of	processors.

• Parallel	implementation	is	recommended	only	for	very	large	input	
strings.
• Time	on	reduced	data	on	each	processor	showed	linearity	to	an	
extent.

•MPI	is	very	useful	as	it	provides	portability,	efficiency	and	flexibility	
for	running	code.



Future	work
• Executing	string	matching	with	very	long	pattern,	approximately	of	
(n-1)	characters,	where	’n’	is	the	length	of	String.

• Dividing	pattern	among	processors.	



THANK	YOU.


