String Matching using MP|

CSE633 Spring 2019

PRESENTED BY NIRANJAN MIRASHI
UNDER THE GUIDANCE OF DR. RUSS MILLER AND DR. MATT JONES
CSE633
DATE - 04/25/19

Problem Definition

Execute string matching in parallel on a very large string on a
number of processors.

Compare serial execution time and parallel execution time.

APPLICATIONS OF STRING MATCHING

DNA SEQUENCING/BIO-INFORMATICS
PLAGIARISM DETECTION

SEARCH ENGINES

INFORMATION RETRIEVAL

DIGITAL FORENSICS AND MANY MORE..

SERIAL EXECUTION - KMP

A linear time algorithm that solves the string matching
problem by preprocessing P in ©(m) time.

Main idea is to skip some comparisons by using the
previous comparison result.

Uses an auxiliary array i that is defined as the following:
rt[i] is the largest integer smaller than i such that P1 ... Pm|i]
is a suffix of P1...Pi

Pattern : A AB A

AABA AABA
AAB[}AC%A?%ABAABA
0 1T 2 - 5 7 10 11 12 13 14 15

AABA

Fig: KMP String Matching

SERIAL EXECUTION TIME

Test Parameters:

. . INPUT SIZE TIME (in seconds)
String length (d) = 26 million g 11.245926
Pattern length =9 d/2 5.65653

d/4 2.83191
d/8 1.3945
d/16 0.19012
d/32 0.18152
d/64 0.17134
d/128 0.09087

Serial Time Visualization

12

10

Time
(e))

0 0.T96%> O85> 07434 09087
d d/2 d/a d/s d/16 d/32 d/64 d/128
Input Size

PARALLEL STRING MATCHING

Divide and Conquer

The main goal here is to divide the string equally among all
the processors and to execute a string matching algorithm.

We the execute a serial string matching algorithm on these
sub-strings.

Algorithm

1. Distribute pattern to each processor

2. Divide string in a way that each processor has ‘d/n’ of string, where d = string.
3. Implement KMP serially. Keep a count of pattern occurrences.
4. If partial pattern in one processor, send length of partial pattern to next processor.

5. If processor receives a message containing length, check:
pattern[len(string)-len(partial_string)] at the start of its own respective sub-string.

If length matches, give current index - length(pattern) as output and increment count.

6. Once the above computation is done, compute prefix sum of counts of all processors. As
a result, processor n will have the total count. Broadcast total count.

7. Output total count, execution time.

Sample Output

/util/common/python/py37/anaconda—-2018.12/bin/python
Launch job
Processor
Processor
Processor

@ found pattern at index 116

@ found pattern at index 5325

@ found pattern at index 11654
Processor @ found pattern at index 14943
Processor @ found pattern at index 24873
Processor @ found pattern at index 125492
Processor @ found pattern at index 127637
Processor @ found pattern at index 132446
Processor @ found pattern at index 257597
Processor 0= ©0.3231534957885742 seconds
Processor 21 found pattern at index 17301831
Processor 21= ©0.32744717597961426 seconds
Processor 29= ©0.3140120506286621 seconds
Processor 8= ©0.31925320625305176 seconds
Processor 31 found pattern at index 25597181
Processor 31= ©0.3222470283508301 seconds
Processor 24= 0.3302140235900879 seconds
Processor 6= ©0.32688426971435547 seconds
Processor 13= ©0.31608128547668457 seconds
Processor 26 found pattern at index 21378136
Processor 26= ©.31433892250061035 seconds
Processor 7= ©.3238825798034668 seconds
Processor 3= 0.47931528091430664 seconds
Processor 14= ©0.3257150650024414 seconds
Processor 10= ©.32370853424072266 seconds
Processor 16= ©.3344874382019043 seconds
Processor 5 found pattern at index 4731803
Processor 5= 0.32947230339050293 seconds
Processor 27= ©0.32381367683410645 seconds
Processor 9= ©0.3379390239715576 seconds
Processor 28= ©.31423163414001465 seconds
Processor 2= ©0.3219468593597412 seconds
Total count = 17

Processor 4= 0.32674503326416016 seconds
Processor 1= ©0.3231236934661865 seconds
Processor 12 found pattern at index 9789245
Processor 12= ©.3232133388519287 seconds
Processor 20= ©.3189244270324707 seconds
Processor 11= ©0.3248271942138672 seconds
Processor 25= ©0.32846593856811523 seconds
Processor 19= ©.31972289085388184 seconds
Processor 18= ©.3185272216796875 seconds
Processor 17 found pattern at index 14054590
Processor 17= ©.3219878673553467 seconds
Processor 30 found pattern at index 24034217
Processor 30 found pattern at index 24686640
Processor 30= ©.3194868564605713 seconds
Processor 23= ©.32378649711608887 seconds
Processor 22= ©0.3210628032684326 seconds
Processor 15= ©.31717896461486816 seconds
All Donelll

"32.o0ut"™ 75L, 3309C

Results

Test-case 1 :

- String of fixed length
of 26 million chars.

Nodes Time ;
2 5.912754 g |
4 2.81644 =t
8 1.420432
16 0.66441 :
32 0.34165
64 0.17203 . | |
128 0.07168 0 32 64 96 128 160 192 224 256

256 0.05385 Nodes

Speed-up

Speed up

250

200
3

e 150
=
o
=
el
&

o 100
w

50

(0]

o 50 100 150 200 250 300

Nodes

Test-case 2 :

- String of variable
length.
- Size increases with

number of processors.

Nodes Time
2 0.048823
4 0.06
8 0.068705
16 0.066502
32 0.0608685
64 0.050034
128 0.05557
256 0.05385

0.08

0.07

o
o
a

o
o
a1

Time (in seconds)
o o
o o
® S

100

150
Nodes

200

250

300

Challenges

The major task was to sequence processor communication
efficiently.

Another major task was to generate such a long string and edit it.
Time taken to process data on 256 nodes was unpredictable.

‘mpidpy’ being recently developed, a deep insight on the package is
not available.

Conclusion

Time for executing a very long string of characters decreased
exponentially with number of processors.

Parallel implementation is recommended only for very large input
strings.

Time on reduced data on each processor showed linearity to an
extent.

MPI is very useful as it provides portability, efficiency and flexibility
for running code.

Future work

Executing string matching with very long pattern, approximately of
(n-1) characters, where 'n’ is the length of String.

Dividing pattern among processors.

THANK YOU.

