
Determining Line Segment
Visibility with MPI

Jayan Patel

CSE 633: Parallel Algorithms
Fall 2012

Fall 2012 2 Line Segment Visibility with MPI

Problem Definition

 Computational Geometry

 From Algorithms Sequential and Parallel:

 Given a set of n pair-wise disjoint line

segments in the first quadrant of the
Euclidean plane, each of which has one
of its endpoints on the x-axis, compute
the piece of each line segment that is
observable from the origin.

Problem Definition

 Assumptions:

 The input data is ordered from left to
right (i.e., by increasing x values).

 The viewer does not have X-ray vision.

Fall 2012 3 Line Segment Visibility with MPI

Fall 2012 4 Line Segment Visibility with MPI

Example

 Atlanta City Skyline

Source: http://en.wikipedia.org/wiki/File:Atlanta_Skyline_from_Buckhead.jpg

Fall 2012 5 Line Segment Visibility with MPI

Example

x

y

Practical Application

 Simple form of occlusion culling

 Popular optimization for graphics-based

applications

 Parallelization is critical to achieve
acceptable real-time performance

 Rendering pipeline

Fall 2012 6 Line Segment Visibility with MPI

Implementation Plan

 Code in C/C++

 Develop serial (RAM) algorithm for
benchmarking and verification

 Develop parallel algorithm using MPI

Fall 2012 7 Line Segment Visibility with MPI

Implementation Plan

 Input
 Single binary file containing n (x,y) pairs
 Sorted by increasing x

 Output
 Single binary file containing triplets of

the form (x,y,visibleLength), where
visibleLength > 0

 Sorted by increasing x

Fall 2012 8 Line Segment Visibility with MPI

Serial (RAM) Algorithm

1. Read binary file into arrays x and y
2. slope[1] = y[1] / x[1]
3. Push (x[1], y[1], y[1]) onto results queue
4. For i = 2 to n, do

a. slope[i] = max(slope[i-1], y[i] / x[i])
b. If slope[i] > slope[i-1] then

i. visibleLength = y[i] - slope[i-1] * x[i]
ii. Push(x[i], y[i], visibleLength) onto results

queue
5. Write each result to output file

Fall 2012 9 Line Segment Visibility with MPI

 Θ(n) time

Parallel Algorithm

1. In parallel, each of p processors, do
a. Read block from data file into arrays x and y
b. slope[1] = y[1] / x[1]
c. P0 only: Push(x[1], y[1], y[1]) onto results

queue
d. For i = 2 to n/p, do

i. slope[i] = max(slope[i-1], y[i] / x[i])

Fall 2012 10 Line Segment Visibility with MPI

 Θ(n/p) time

Parallel Algorithm

2. In parallel, each of p processors, do

a. Compute global parallel prefix (operation =
maximum) for the set of p right-most prefixes

Fall 2012 11 Line Segment Visibility with MPI

 Using PRAM-like recursive doubling
process, requires Θ(log(p)) iterations of
simultaneous MPI operations

Parallel Algorithm

3. In parallel, each of p processors, do
a. If not P0 then

i. prevSlope = global prefix from Pk-1

ii. slope[1] = max(prevSlope, slope[1])
iii. if slope[1] > prevSlope then push result

b. For i = 2 to n/p, do
i. If slope[i] > slope[i-1] then

a. visibleLength = y[i] - slope[i-1] * x[i]
b. push(x[i], y[i], visibleLength) onto

results queue
ii. else slope[i] = slope[i-1]

Fall 2012 12 Line Segment Visibility with MPI

 Θ(n/p) time

Parallel Algorithm (cont.)

4. In parallel, each of p processors, do
a. Write each result to unique output file
b. Enter barrier

5. P0 concatenates the results files in processor

order

Fall 2012 13 Line Segment Visibility with MPI

 Θ(n/p) time (worst case)

Test Plan

 Vary size of data set

 Vary number of processes
 12- core Dell compute nodes will be

used

 Measure running time, compute speedup

 Tabulate and graph results

 Explain trends
Fall 2012 14 Line Segment Visibility with MPI

Expectations

 For fixed data size:

 Small number of processors will have slower

run times than RAM algorithm

 Increasing the number of processors will
eventually lead to reduced execution times

 Eventually inter-processor communication
will come into play

Fall 2012 15 Line Segment Visibility with MPI

Expectations

 For fixed number of processors:

 RAM will perform best for smaller data sizes

 As data size increases, performance of

parallel algorithm will exceed RAM

 Large data sizes will be required to see
parallel performance exceed RAM
performance

Fall 2012 16 Line Segment Visibility with MPI

Expectations

Fall 2012 17 Line Segment Visibility with MPI

R
u
n
n
in

g
 T

im
e

Number of Processors

Large Dataset

Small Dataset

1

Implementation

Fall 2012 18 Line Segment Visibility with MPI

Implementation Outline

 Generation of Input Data

 Details of Parallel Approach

 Measurements and Test Setup

 Results

Fall 2012 19 Line Segment Visibility with MPI

Input Data – Initial Approach

 Separate program

 Randomly generate pairs of numbers
representing x and y coordinates

 Sort data by increasing x coordinate

 Write data to binary data file as (x, y) pairs

Fall 2012 20 Line Segment Visibility with MPI

Fall 2012 21 Line Segment Visibility with MPI

Input Data – Initial Approach

x

y

Input Data – Issues

 Very few visible line segments

 All results allocated to first process

 Uninteresting

Fall 2012 22 Line Segment Visibility with MPI

Input Data – Revised Approach

 Separate program

 Generate data in order of increasing x
coordinate
 Limit the increase in successive x

coordinates
 Factor in current index when generating

y coordinate

 Write data to binary data file as (x, y) pairs

Fall 2012 23 Line Segment Visibility with MPI

Fall 2012 24 Line Segment Visibility with MPI

Input Data – Revised Approach

x

y

Fall 2012 25 Line Segment Visibility with MPI

Input Data – Summary

Fall 2012 26 Line Segment Visibility with MPI

Parallel Approach

x

y

P0 P1 P2 P3

Desired Results: Segments 1, 5, and 15

Visible
Segments

Parallel Approach – Step 1

 In parallel, read input binary data file and
compute local parallel prefix
 Operation = max(slope)

Fall 2012 27 Line Segment Visibility with MPI

P0 P1 P2 P3

5 3 4 5 8 6 6 7 7 5 4 6 5 6 9 8

5 5 5 5 8 8 8 8 7 7 7 7 5 6 9 9

slopes

local prefixes

Parallel Approach – Step 2

 In parallel, compute global prefixes for
right-most local prefixes
 Operation = max(slope)

Fall 2012 28 Line Segment Visibility with MPI

P0 P1 P2 P3

5 3 4 5 8 6 6 7 7 5 4 6 5 6 9 8

5 5 5 5 8 8 8 8 7 7 7 7 5 6 9 9

slopes

local prefixes

Step 1: Send to Pi+1

5 8 8 9 After Step 1:

Step 2: Send to Pi+2

After Step 2: 5 8 8 9

Parallel Approach – Step 3

 In parallel, distribute global prefix locally
and push results
 Operation = max(slope)

Fall 2012 29 Line Segment Visibility with MPI

P0 P1 P2 P3

5 3 4 5 8 6 6 7 7 5 4 6 5 6 9 8

5 5 5 5 8 8 8 8 7 7 7 7 5 6 9 9

 5 8 8 9

5 5 5 5 8 8 8 8 8 8 8 8 8 8 9 9

slopes

local prefixes

global prefixes

final prefixes

results

Parallel Approach – Step 4

 In parallel, write each result to unique
binary output file

Fall 2012 30 Line Segment Visibility with MPI

P0

outputP0.bin

P1

outputP1.bin

P2

outputP2.bin

P3

outputP3.bin

Parallel Approach – Step 5

 Combine results from each processor into
a single binary output file
 Used pbs-hydra script

Fall 2012 31 Line Segment Visibility with MPI

outputP0.bin outputP1.bin outputP2.bin outputP3.bin

parallelOutput.bin

Parallel Approach – Verification Step

 Compare the parallel output file to the
serial output file
 Used pbs-hydra script

Fall 2012 32 Line Segment Visibility with MPI

serialOutput.bin parallelOutput.bin diff

diffResult.bin
File size
should be 0

Timing Measurements

Fall 2012 33 Line Segment Visibility with MPI

Read

• Load data from disk

• Enter barrier

Compute

• Compute local prefixes

• Compute global prefixes

• Distribute global prefixes

Write

• Write results to separate files

• Combine files

TStart

T1

T2

T3

TEnd

TRead

TBarrier

TCompute

TWrite

TTotal

Testing Details

Fall 2012 34 Line Segment Visibility with MPI

 For each test in each process, TRead, TBarrier, TCompute, and
TWrite were measured.

 MPI_Reduce was used to record the min and max of

each of these in P0 for the run.

 Each test for each test configuration was repeated 100
times.

 Min and max for TRead, TBarrier, TCompute, and TWrite were

tracked across all 100 runs.
 Averages for TRead, TBarrier, TCompute, and TWrite were also

computed.

Testing Configuration Summary

Fall 2012 35 Line Segment Visibility with MPI

Num Processes

N
u

m
 S

eg
m

en
ts

 Used minimum number of 12-core compute nodes
required to support one process per core
 2.40 GHz, 48 GB RAM, Infiniband (QL) network

 Recorded min, max, and average for TRead, TBarrier, TCompute,
and TWrite for each run

Serial (RAM) Results

Fall 2012 36 Line Segment Visibility with MPI

Parallel Results – TCompute

Fall 2012 37 Line Segment Visibility with MPI

Num Processes

N
u

m
 S

eg
m

en
ts

 Compute Time (seconds)

Fall 2012 38 Line Segment Visibility with MPI

Parallel Results – TCompute

Fall 2012 39 Line Segment Visibility with MPI

Parallel Results – TCompute

Fall 2012 40 Line Segment Visibility with MPI

Parallel Results – TTotal

Num Processes

N
u

m
 S

eg
m

en
ts

 Total Time (seconds)

Fall 2012 41 Line Segment Visibility with MPI

Parallel Results – TTotal

Fall 2012 42 Line Segment Visibility with MPI

Parallel Results – TTotal

Parallel Results – TCompute

Fall 2012 43 Line Segment Visibility with MPI

Num Processes

N
u

m
 S

eg
m

en
ts

 Compute Time (seconds)

Fall 2012 44 Line Segment Visibility with MPI

Parallel Results – TCompute

Fall 2012 45 Line Segment Visibility with MPI

Parallel Results – TTotal

Num Processes

N
u

m
 S

eg
m

en
ts

 Total Time (seconds)

Fall 2012 46 Line Segment Visibility with MPI

Parallel Results – TTotal

Conclusions

 For the given data sets and test configurations:

 Compute time (TCompute) continued to

decrease and associated speedup was good

 The larger the data set, the larger the optimal
number of processes

 The smaller the amount of fixed data per
process, the more scalable the parallel
algorithm appeared to be, although this
requires further investigation

Fall 2012 47 Line Segment Visibility with MPI

Follow-On Items

 Adapt serial algorithm to use OpenMP

 Remove assumption that input data is
ordered by increasing x

Fall 2012 48 Line Segment Visibility with MPI

Questions

?
Fall 2012 49 Line Segment Visibility with MPI

References

 Miller, Russ and Laurence Boxer. Algorithms
Sequential and Parallel: A Unified Approach.
Hingham, MA: Charles River Media, 2005. Print.

 http://en.wikipedia.org/wiki/File:Atlanta_Skyline
_from_Buckhead.jpg

Fall 2012 50 Line Segment Visibility with MPI

Determining Line Segment
Visibility with MPI

Jayan Patel

CSE 633: Parallel Algorithms
Fall 2012

