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Problem Definition 

 Computational Geometry 
 

 From Algorithms Sequential and Parallel: 
 
 Given a set of n pair-wise disjoint line 

segments in the first quadrant of the 
Euclidean plane, each of which has one 
of its endpoints on the x-axis, compute 
the piece of each line segment that is 
observable from the origin. 



Problem Definition 

 Assumptions: 
 

 The input data is ordered from left to 
right (i.e., by increasing x values). 
 

 The viewer does not have X-ray vision. 
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Example 

 Atlanta City Skyline 

Source: http://en.wikipedia.org/wiki/File:Atlanta_Skyline_from_Buckhead.jpg  
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Example 

x 

y 



Practical Application 

 Simple form of occlusion culling 
 
 Popular optimization for graphics-based 

applications 
 

 Parallelization is critical to achieve 
acceptable real-time performance 
 
 Rendering pipeline 
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Implementation Plan 

 Code in C/C++ 
 

 Develop serial (RAM) algorithm for 
benchmarking and verification 
 

 Develop parallel algorithm using MPI 
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Implementation Plan 

 Input 
 Single binary file containing n (x,y) pairs 
 Sorted by increasing x 
 

 Output 
 Single binary file containing triplets of 

the form (x,y,visibleLength), where 
visibleLength > 0 

 Sorted by increasing x 
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Serial (RAM) Algorithm 

1. Read binary file into arrays x and y 
2. slope[1] = y[1] / x[1] 
3. Push (x[1], y[1], y[1]) onto results queue 
4. For i = 2 to n, do 

a. slope[i] = max(slope[i-1], y[i] / x[i]) 
b. If slope[i] > slope[i-1] then 

i. visibleLength = y[i] - slope[i-1] * x[i] 
ii. Push(x[i], y[i], visibleLength) onto results 

queue 
5. Write each result to output file  
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 Θ(n) time 



Parallel Algorithm 

1. In parallel, each of p processors, do 
a. Read block from data file into arrays x and y  
b. slope[1] = y[1] / x[1] 
c. P0 only: Push(x[1], y[1], y[1]) onto results 

queue 
d. For i = 2 to n/p, do 

i. slope[i] = max(slope[i-1], y[i] / x[i]) 
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 Θ(n/p) time 



Parallel Algorithm 

2. In parallel, each of p processors, do 
 

a. Compute global parallel prefix (operation = 
maximum) for the set of p right-most prefixes 
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 Using PRAM-like recursive doubling 
process, requires Θ(log(p)) iterations of 
simultaneous MPI operations 



Parallel Algorithm 

3. In parallel, each of p processors, do 
a. If not P0 then 

i. prevSlope = global prefix from Pk-1 

ii. slope[1] = max(prevSlope, slope[1]) 
iii. if slope[1]  > prevSlope then push result 

b. For i = 2 to n/p, do 
i. If slope[i] > slope[i-1] then 

a. visibleLength = y[i] - slope[i-1] * x[i] 
b. push(x[i], y[i], visibleLength) onto 

results queue 
ii. else slope[i] = slope[i-1] 
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 Θ(n/p) time 



Parallel Algorithm (cont.) 

4. In parallel, each of p processors, do 
a. Write each result to unique output file 
b. Enter barrier 

 
5. P0 concatenates the results files in processor 

order 
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 Θ(n/p) time (worst case) 



Test Plan 

 Vary size of data set 
 

 Vary number of processes 
 12- core Dell compute nodes will be 

used 
 

 Measure running time, compute speedup 
 

 Tabulate and graph results 
 

 Explain trends 
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Expectations 

 For fixed data size: 
 
 Small number of processors will have slower 

run times than RAM algorithm 
 

 Increasing the number of processors will 
eventually lead to reduced execution times 
 

 Eventually inter-processor communication 
will come into play 
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Expectations 

 For fixed number of processors: 
 
 RAM will perform best for smaller data sizes 

 
 As data size increases, performance of 

parallel algorithm will exceed RAM 
 

 Large data sizes will be required to see 
parallel performance exceed RAM 
performance 
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Expectations 
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Implementation 
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Implementation Outline 

 Generation of Input Data 
 

 Details of Parallel Approach 
 

 Measurements and Test Setup 
 

 Results 

Fall 2012 19 Line Segment Visibility with MPI 



Input Data – Initial Approach 

 Separate program 
 

 Randomly generate pairs of numbers 
representing x and y coordinates 
 

 Sort data by increasing x coordinate 
 

 Write data to binary data file as (x, y) pairs 
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Input Data – Initial Approach 
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Input Data – Issues 

 Very few visible line segments 
 

 All results allocated to first process 
 

 Uninteresting 
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Input Data – Revised Approach 

 Separate program 
 

 Generate data in order of increasing x 
coordinate 
 Limit the increase in successive x 

coordinates 
 Factor in current index when generating 

y coordinate 
 

 Write data to binary data file as (x, y) pairs 
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Input Data – Revised Approach 
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Input Data – Summary 
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Parallel Approach 

x 

y 

P0 P1 P2 P3 

Desired Results: Segments 1, 5, and 15  

Visible 
Segments 



Parallel Approach – Step 1 

 In parallel, read input binary data file and 
compute local parallel prefix 
 Operation = max(slope) 
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P0 P1 P2 P3 
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Parallel Approach – Step 2 

 In parallel, compute global prefixes for 
right-most local prefixes 
 Operation = max(slope) 
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P0 P1 P2 P3 
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local prefixes 

Step 1: Send to Pi+1 

5 8 8 9 After Step 1: 

Step 2: Send to Pi+2 

After Step 2: 5 8 8 9 



Parallel Approach – Step 3 

 In parallel, distribute global prefix locally 
and push results 
 Operation = max(slope) 
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Parallel Approach – Step 4 

 In parallel, write each result to unique 
binary output file 
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P0 

outputP0.bin 

P1 

outputP1.bin 

P2 

outputP2.bin 

P3 

outputP3.bin 



Parallel Approach – Step 5 

 Combine results from each processor into 
a single binary output file 
 Used pbs-hydra script 
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outputP0.bin outputP1.bin outputP2.bin outputP3.bin 

parallelOutput.bin 



Parallel Approach – Verification Step 

 Compare the parallel output file to the 
serial output file 
 Used pbs-hydra script 
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serialOutput.bin parallelOutput.bin diff 

diffResult.bin 
File size 
should be 0 



Timing Measurements 
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Read 

• Load data from disk 

• Enter barrier 

Compute 

• Compute local prefixes 

• Compute global prefixes 

• Distribute global prefixes 

Write 

• Write results to separate files 

• Combine files 

TStart 

T1 

T2 

T3 

TEnd 

TRead 

TBarrier 

TCompute 

TWrite 

TTotal 



Testing Details 
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 For each test in each process, TRead, TBarrier, TCompute, and 
TWrite were measured. 
 
 MPI_Reduce was used to record the min and max of 

each of these in P0 for the run. 
 

 Each test for each test configuration was repeated 100 
times. 
 
 Min and max for TRead, TBarrier, TCompute, and TWrite were 

tracked across all 100 runs. 
 Averages for TRead, TBarrier, TCompute, and TWrite were also 

computed. 



Testing Configuration Summary 
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 Used minimum number of 12-core  compute nodes 
required to support one process per core 
 2.40 GHz, 48 GB RAM, Infiniband (QL) network 
 

 Recorded min, max, and average for TRead, TBarrier, TCompute, 
and TWrite for each run 



Serial (RAM) Results 
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Parallel Results – TCompute 
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 Compute Time (seconds) 
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Parallel Results – TCompute 
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Parallel Results – TCompute 
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Parallel Results – TTotal 
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Parallel Results – TTotal 
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Parallel Results – TTotal 



Parallel Results – TCompute 
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Parallel Results – TCompute 
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Parallel Results – TTotal 
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Parallel Results – TTotal 



Conclusions 

 For the given data sets and test configurations:  
 
 Compute time (TCompute) continued to 

decrease and associated speedup was good 
 

 The larger the data set, the larger the optimal 
number of processes 
 

 The smaller the amount of fixed data per 
process, the more scalable the parallel 
algorithm appeared to be, although this 
requires further investigation 
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Follow-On Items 

 Adapt serial algorithm to use OpenMP 
 

 Remove assumption that input data is 
ordered by increasing x 
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Questions 

? 
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