
Global Sequence Alignments
using C / MPI

CSE 633 - Fall 2012
State University of New York at Buffalo

Dr. Russ Miller

Ravi Patel (www.RaviPatel.me)
presented on November 29, 2012

Outline

● Global Sequence Alignment?
○ Applications

● Sequential Algorithm
○ Needleman-Wunsch Algorithm

● Parallel Algorithm

● Experiments and Results

● Future Extensions

The Problem

● Sequence Alignment
○ Think of sequences as strings of letters from a fixed

alphabet

○ The goal is to describe sequence similarity, or how
closely two sequences match each other
■ Can be a score (number)
■ Can be an “alignment” (visual representation)

○ Global (align sequences from end-to-end)
○ Local (align similar regions between sequences)

An Example

● Input: two DNA sequences
○ X: GCGCATGGATTGAGCGA
○ Y: TGCGCCATTGATGACCA

● Insert gaps (minimize) to align and match
letters (maximize)

● Possible Alignments:
○ -GCGC-ATGGATTGAGCGA 4, 13, 2
○ TGCGCCATTGAT-GACC-A

○ ------GCGCATGGATTGAGCGA 12, 5, 6
○ TGCGCC----ATTGATGACCA--

Applications

● Bioinformatics involves a lot of sequences
○ DNA, RNA, and Protein
○ Global Sequence Alignment used to understand

evolutionary relationships
■ e.g., human DNA vs. chimps DNA

● Natural language processing
● Business and marketing research

○ e.g., analyze series of purchases over time

Global Sequence Alignment

● Scoring Function
○ s(x, y) → match (+2), mismatch (-1), gap (-2)

○ -GCGC-ATGGATTGAGCGA
○ TGCGCCATTGAT-GACC-A
○ 4(-2) + 13(+2) + 2(-1) = 16

○ ------GCGCATGGATTGAGCGA
○ TGCGCC----ATTGATGACCA--
○ 12(-2) + 5(+2) + 6(-1) = -20

Global Sequence Alignment

● Needleman-Wunsch Algorithm
○ Based on dynamic programming

■ Build up an optimal alignment using previous
solutions for optimal alignments of smaller
substrings.

○ Guarantees an optimal global alignment of two
sequences

Needleman-Wunsch Algorithm

● Given 2 sequences, X and Y, of lengths, n
and m, respectively

T : {0, 1, ... , n} × {0, 1, ... , m} → R

● T(i, j) equals the best score of the alignment
of the two prefixes (x1, x2, ... , xi) and (y1, y2,
... , yj).

Needleman-Wunsch Algorithm

● T(i, j) equals the best score of the alignment
of the two prefixes
○ (x1, x2, ... , xi) and (y1, y2, ... , yj).

- x1 ... xi ...

- T(0, 0)

y1

... T(i-1, j-1) T(i, j-1)

yj T(i-1, j) T(i, j)

...

Needleman-Wunsch Algorithm

● Optimal alignment between X and Y can end
with one of three possibilities:
○ yj is aligned with a gap
○ xi is aligned with yj
○ xi is aligned with a gap

● T(i, j) = max:
○ T(i, j-1) + s('-', yj) → T(i, j-1) - 2
○ T(i-1, j-1) + s(xi, yj),
○ T(i-1, j) + s(xi, '-'), → T(i-1, j) - 2

Sequential Example

● Initial Setup

● Values predefined by scoring function
○ s(xi, '-') = s('-', yj) = -2

- A C G T

- 0 -2 -4 -6 -8

A -2

G -4

G -6

Sequential Example

● T(1, 1) = max:
○ T(1, 0) - 2,
○ T(0, 0) + s('A', 'A'),
○ T(0, 1) - 2

● T(1, 1) = max(-4, 2, -4) = 2

- A C G T

- 0 -2 -4 -6 -8

A -2 2

G -4

G -6

Sequential Example

● Each row computed in O(n)

- A C G T

- 0 -2 -4 -6 -8

A -2 2 0 -2 -4

G -4

G -6

Sequential Example

● T(1, 2) = max:
○ T(1, 1) - 2,
○ T(0, 1) + s('G', 'A'),
○ T(0, 2) - 2

● T(3, 1) = max(-8, -3, -2) = -3

- A C G T

- 0 -2 -4 -6 -8

A -2 2 0 -2 -4

G -4 0

G -6

Sequential Example

● O(mn) = O(n2) to compute the table

● Optimal Alignment Score = T(4, 3) = 1

- A C G T

- 0 -2 -4 -6 -8

A -2 2 0 -2 -4

G -4 0 1 2 0

G -6 -2 -1 3 1

Sequential Example

● O(m+n) = O(n) to construct the alignment

● Optimal Alignments:
○ ACGT & ACGT
○ AGG- & A-GG

- A C G T

- 0 -2 -4 -6 -8

A -2 2 0 -2 -4

G -4 0 1 2 0

G -6 -2 -1 3 1

Sequential Example

● O(m+n) = O(n) to construct the alignment

● Optimal Alignments:
○ ACGT & ACGT
○ AGG- & A-GG

- A C G T

- 0 -2 -4 -6 -8

A -2 2 0 -2 -4

G -4 0 1 2 0

G -6 -2 -1 3 1

Sequential Algorithm Summary

● O(1) to compute a score
● O(mn) = O(n2) to compute the table
● O(m+n) = O(n) to construct the alignment

● Memory = O(n2)
● Runtime = O(n2)

Parallel Algorithm

● Initial values are predefined

● Divide processors, p, by columns
○ each processor, gets O(n/p) columns and O(m) rows
○ compute row-by-row

- A C G T

- 0 -2 -4 -6 -8

A -2

G -4

G -6

Parallel Algorithm

● Step 1a: T(i, j-1)

● Each processor has T(i, j-1) from previous
row

- A C G T

- 0 -2 -4 -6 -8

A -2

G -4

G -6

Parallel Algorithm

● Step 1b: T(i-1, j-1)

● After each row, each processor will send its
T(i, j) to the proceeding processor
○ T(i-1, j-1) will be available to each processor
○ can be done in O(1)

- A C G T

- 0 -2 -4 -6 -8

A -2

G -4

G -6

Parallel Algorithm

● Step 2: T(i-1, j)

● Each processor has
○ max { T(i-1, j-1) + s(xi, yj), T(i, j-1) - 2 }

- A C G T

- 0 -2 -4 -6 -8

A -2

G -4

G -6

Parallel Algorithm

● Step 2: to get T(i-1, j)
○ Let w[i] = max { T(i-1, j-1) + s(xi, yj), T(i, j-1) - 2 }

○ Let x[i] = T(i, j) - s('-', yk) for k = 1 → i
○ ... some proofs ...

○ x[i] = max((w[i] + gi), (x[i-1]))
○ = max((w[i] + gi), max((w[i-1] + g(i-1)), x[i-2]))
○ ... some more proofs ...

● T(i, j) = x[i] – gi
○ use parallel prefix with max operator

Parallel Algorithm

● Step 2: Parallel Prefix with MAX Operator

● T(i, j) = x[i] – gi
○ x[i] = max((w[i] + gi), (x[i-1]))

■ parallel prefix in O(log(p))

- A C G T

- 0 -2 -4 -6 -8

A -2

G -4

G -6

Parallel Algorithm

● Step 3: Compute the T(i, j)'s

● Step 4: Pass T(i, j) to next processor
○ O(1) to send/recv

- A C G T

- 0 -2 -4 -6 -8

A -2 2 0 -2 -4

G -4

G -6

Parallel Algorithm

● Repeat the 4 Steps for each row
- A C G T

- 0 -2 -4 -6 -8

A -2 2 0 -2 -4

G -4

G -6

Parallel Algorithm

● Last processor has optimal alignment score

● O(n) to construct the alignment

- A C G T

- 0 -2 -4 -6 -8

A -2 2 0 -2 -4

G -4 0 1 2 0

G -6 -2 -1 3 1

Algorithms Summary

● Runtimes
○ Sequential: O(n2)
○ Parallel: O(n(log(p) + n/p)) = O(nlog(p)) or O(n2/p)

■ worst-case scenario n >> p

● Memory
○ Sequential: O(n2)
○ Parallel: O(n2/p) per processor

■ can have a master node broadcast chunks of
data

Experiment 1 - Setup

● Code the Parallel Algorithm using C / MPI

● Run the program with fixed |X| = |Y|
○ use 1, 2, 4, 8, 16, 32, 64 -cores
○ measure speedups

● Run the program with fixed number of cores
○ |X| = |Y| = 1, 2, 4, 8, ..., 1024, 2048, 4096, 8192, ...
○ measure effects of varying sequence lengths on

runtimes
■ determine ideal number of columns per core

● Each test result will be an average of 30
runs

Experiment 1 - Setup

● DELL (2 cores per processor)
○ Number of nodes = 256
○ Primary SC1425 2-Way Compute Nodes
○ Processor Description:

■ 2x3.0GHz (256 nodes) Intel Xeon "Irwindale"
Processors

■ Main memory size: 2048 Mbytes (160 nodes)
■ Instruction cache size: 16 Kbytes
■ Data cache size: 16 Kbytes

Experiment 1 - Initial Results

● Runtimes, in seconds

Experiment 1 - Initial Results

● Issue: Can only retain ~1,048,576 cells
○ Fix: retain only the last computed row

■ allows for |X| = 1,048,576 and |Y| = infinite?
■ cannot construct the alignment

- A C G T

- x x x x x

A x x x x x

G -4 0 1 2 0

G -6 -2 -1 3 1

Experiment 1 - Final Results

● Runtimes, in seconds
○ 2-core Speedup: |X| = 256
○ 64-core Speedup: |X| = 4096
○ Optimal Speedup: ~512-1024 columns/core

Experiment 1 - Final Results

● Speedups with |X| = 1024
○ 1.71, 1.19, 0.79, 0.88, 0.60, 0.36, 0.27

Experiment 1 - Final Results

● Speedups with |X| = 2048
○ 1.84, 1.86, 1.79, 1.67, 1.14, 0.74, 0.57

Experiment 1 - Final Results

● Speedups with |X| = 4096
○ 1.90, 2.52, 2.91, 2.89, 2.17, 1.20, 1.19

Experiment 1 - Final Results

● Speedups with |X| = 131072
○ 1.98, 3.90, 7.47, 13.58, 21.49, 27.75, 28.32

Experiment 1 - Findings

● Cannot keep T(i, j) table in memory for larger
sequence lengths
○ haploid human genome has about 3 billion base

pairs

● Minimum of |X| = 256 to see any speedup

● Speedups peak at |X| = ~512-1024 columns
per core

Experiment 2 - Setup

● Divide the program into steps and observe
runtimes with increasing cores
○ Parallel Runtime: O(n(log(p) + n/p))

1. Calculate w[i]'s and x[i]'s (sequential prefix)
2. Calculate last x[i]'s (parallel prefix)
3. Calculate scores T(i, j)'s
4. Send last score to next processor

● Each test result will be an average of 30
runs

Experiment 2 - Setup

● IBM (8 cores per processor)
○ Number of nodes = 128
○ PowerEdge C6100 - dual quad-core Compute

Nodes
○ Processor Description:

■ 8x2.27GHz Intel Xeon L5520 "Westmere"
(Nehalem-EP) Processor Cores

■ Main memory size: 24576 Mbytes
■ Instruction cache size: 128 Kbytes
■ Data cache size: 128 Kbytes

○ InfiniBand Mellanox Technologies MT26428 Network
Card

Experiment 2 - Results

● 2-core Speedup: |X| = 128
● 64-core Speedup: |X| = 2048
● Optimal Speedup: ~32-128 columns/core

Experiment 2 - Results

● Sequential runtime increased w/ slower cores
● Parallel runtime decreased w/ faster network

○ parallel computations become less expensive,
relative to the sequential computations
■ O(n(log(p) + n/p))

Experiment 1 Experiment 2

Processor / Network 3.0 GHz / GM 2.27 GHz / IB2

2-Core Speedup |X| = 256 |X| = 128

64-Core Speedup |X| = 4096 |X| = 2048

Optimal Speedup |X| = ~512-1024 |X| = ~32-128

Experiment 2 - Results

1. Calculate w[i]'s and x[i]'s (sequential prefix)
2. Calculate last x[i]'s (parallel prefix)
● |X| = 128 , Best Runtime: 2-cores

Experiment 2 - Results

1. Calculate w[i]'s and x[i]'s (sequential prefix)
2. Calculate last x[i]'s (parallel prefix)
● |X| = 1024, Best Runtime: 8-cores

Experiment 2 - Results

1. Calculate w[i]'s and x[i]'s (sequential prefix)
2. Calculate last x[i]'s (parallel prefix)
● |X| = 2048, Best Runtime: 16-cores

Experiment 2 - Results

1. Calculate w[i]'s and x[i]'s (sequential prefix)
2. Calculate last x[i]'s (parallel prefix)
● |X| = 8192, Best Runtime: 32-cores

Experiment 2 - Findings

● Optimal Speedups acquired by balancing the
equation: O(n(log(p) + n/p))
○ number of cores
○ cores' computational power (GHz)
○ network speed
○ columns per core

Experiment 3 - Setup

● Run the program with fixed |X| = |Y|
○ 4 cores: 1 node, 2 nodes, 4 nodes
○ 8 cores: 1 node, 2 nodes, 4 nodes
○ 16 cores: 2 nodes, 4 nodes, 8 nodes
○ 32 cores: 4 nodes, 8 nodes, 16 nodes

○ measure and compare runtimes as the number of
cores per node decreases

● Each test result will be an average of 30
runs

Experiment 3 - Setup

● IBM (8 cores per processor)
○ Number of nodes = 128
○ PowerEdge C6100 - dual quad-core Compute

Nodes
○ Processor Description:

■ 8x2.27GHz Intel Xeon L5520 "Westmere"
(Nehalem-EP) Processor Cores

■ Main memory size: 24576 Mbytes
■ Instruction cache size: 128 Kbytes
■ Data cache size: 128 Kbytes

○ InfiniBand Mellanox Technologies MT26428 Network
Card

Experiment 3 - Results

● |X| = 4096
○ unusual runtimes with 16 (8) and 32 (16)

Experiment 3 - Results

● |X| = 8192
○ unusual runtimes with 8 (4) and 32 (16)

Experiment 3 - Results

● |X| = 16384
○ unusual runtimes with 4 (2) and 32 (16)

Experiment 3 - Results

● |X| = 524288
○ unusual runtimes with 8 (4), 16 (8), and 32 (16)

Experiment 3 - Findings

● On average, runtimes increase more going from high
concentration to medium concentration, rather than
medium to low
○ Unusual runtimes with 32 cores, going from 8 nodes to 16 nodes

Experiment 3 - Findings

● Tests were repeated for 32 cores
○ Unusually good runtimes with 8 nodes and 16 nodes
○ Inability to monitor or control the network traffic makes for difficult

analyses of the effects of varying distributions of cores across nodes

Future Extensions

1. Scalability
○ allow larger sequences to be aligned
○ construct table in blocks, retaining the last column

and last row after computing each block

2. Construct Alignment
○ may require I/O

■ will substantially slow down the program

3. Local Sequence Alignments
○ Smith–Waterman algorithm

■ compares segments of sequences and optimizes
the similarity score

Questions?

● References
○ Parallel biological sequence comparison using prefix

computations
■ Srinivas Aluru, Natsuhiko Futamura, and Kishan

Mehrotra

○ Computational Biology on Parallel Computers
■ Srinivas Aluru

○ http://www.cs.hunter.cuny.edu/

