
PARALLELIZING THE 

FLOYD-WARSHALL

ALGORITHM

Guided by : Prof. Russ Miller

CSE 633 : Parallel Algorithms

Presented by : Prashant Godhwani



Contents

• Introducing Floyd-Warshall Algorithm

• Why parallelizing makes sense?

• Serial Implementation

• Parallel Implementation

• Unequal Row Distribution

• Negative Cycle detection

• Results and Visualizations

• Planning for Block Based Floyd-Warshall

• Progress Report

• What’s next?

• References

2



What is Floyd-Warshall Algorithm?

An algorithm for finding the shortest path between all pair of nodes in 

a directed graph.

Some points to keep in mind –

1) While algorithms like Dijkstra's and Bellman Ford also find shortest

path between source and destination nodes, Floyd-Warshall takes

it a step further and calculates shortest distance between every

pair of node unlike the former two.

2) The algorithm has many applications ranging from Network

Routing, Transportation Planning to Social Networks and Robotics.
Applications

3



Why do we care about parallelizing it?

4

• Time Complexity of Floyd-Warshall is 𝑶 𝒏𝟑 where n is the number of nodes in the graph. 

• This is because for each pair of vertices, the algorithm considers all possible intermediate vertices 

and computes the shortest path between them. Therefore, the running time of the algorithm is 

proportional to the cube of the number of vertices in the graph.

• This means that –

1000
COMPUTATIONS FOR 10 NODES

1,000,000
COMPUTATIONS FOR 100 NODES

1,000,000,000
COMPUTATIONS FOR 1,000 NODES



Okay, but how does it work, Serially?

The way Floyd-Warshall algorithm works is by traversing over 

every intermediate node and finding a shortest path from Source S, 

to destination D, going through Intermediate node I.

Here pointer k is traversing over the intermediate nodes, i is 

traversing over all the sources and j over all the destinations 

possible, 

5



Now, how do you parallelize it?

BLOCK BASED PARALLELIZATION

6

ROW BASED PARALLELIZATION

Can be parallelized using different ways, but two approaches that I considered were -

In this approach, the adjacency matrix is divided

into blocks with each block being assigned to one

of the processes. Each process is responsible for

calculating the shortest paths within its block.

WHEN – More efficient when matrix is large, and

processes are less.

In this approach, the adjacency matrix is divided

into rows with each row being assigned to one of

the processes. Each process is responsible for

calculating the shortest paths within the rows

assigned to it.

WHEN – More efficient when matrix is small, and

processes are more.



What and how ?

To get things up and moving, I decided to proceed with Row based

parallelization.

• For each matrix of size n x n, and p processes, each process

receives a matrix of size [n/p][n].

• As we can see on the right, to fill in the value of arr[i][j], we need

arr[i][k] and arr[k][j].

• Thanks to the row-based approach, process P can locally access

arr[i][k], but for arr[k][j], the process that was assigned kth row,

has to somehow broadcast all the elements of the kth row to all

the processes.



Okay, what about Other Processes?

So, we updated the distances for one processes,

but other processes also need these updated

distances to calculate distances for their sub-

matrix.

Before updating kth row, we send it to all the other

processes. This enables them to proceed

immediately to do their work.



Pseudo code for Parallel Approach

9

For i=2, j=2 and k=0



Unequal Row Distribution

• Worked on unequal row distribution.

• Earlier, the program where number of

rows where not divisible by the number

of processes would give incorrect

results.

• Calculated sendCounts and

displacements to be used for Scatterv

and Gatherv.

• Scatterv and Gatherv unequally

distributed the rows to different

processes.

10

Fig: Row distribution with 5 Rows and 3 Processes



Detect Negative Cycles

• We know that minimum distance from

one vertex to itself is always zero.

• However, if we see that the distance

is negative, we can imply that there

must be a negative cycle as the

distance after traversing got negative.

11



Performance

12

With [2,000 x 2,000] matrix

4 Million elements

With [10,000 x 10,000] matrix

100 Million elements

Communication 

overtakes Computation



13

Processes Nodes Processes

/Node

Time (in 

seconds)

1 1 1 57.203

5 1 5 8.81601

20 1 20 5.23303 

30 1 30 3.1345

40 1 40 2.47199

60 2 30 4.01625

80 2 40 3.89197

100 2 50 5.34201

120 3 40 4.02888 

140 3 47 4.78264 

160 3 40 4.50202 

180 4 45 5.24053 

200 4 50 5.72356 

Scaling Processes with Minimal Nodes

With [4,000 x 4,000] matrix

Communication 

overtakes Computation



Processes Nodes Processes

/Node

Time (in 

seconds)

1 1 1 57.203

5 5 1 11.8571

20 20 1 3.39511

30 30 1 2.43993

40 40 1 1.93742

60 60 1 2.64698

80 80 1 2.898319

100 50 2 3.06283

120 60 2 3.07363

140 70 2 3.2733

160 40 4 4.89029

180 60 3 5.79321

200 70 4 7.01954

14

Scaling Nodes with Minimal Processes

With [4,000 x 4,000] matrix 



15

Processes Nodes Processe

s/Node

Time (in 

seconds)

1 1 1 57.203

5 5 1 11.8571

20 20 1 3.39511

30 30 1 2.43993

40 40 1 1.93742

60 60 1 2.64698

80 80 1 2.898319

Processes Nodes Processes/

Node

Time (in 

seconds)

1 1 1 57.203

5 1 5 8.81601

20 1 20 5.23303 

30 1 30 3.1345

40 1 40 2.47199

60 1 60 4.01625 

80 2 40 3.89197

With [4,000 x 4,000] matrix – Comparing Multiple Nodes vs Multiple Processes 

Scaling Processes with Minimal Nodes

Scaling Nodes with Minimal Processes

Note: More time taken by “Minimal Nodes, Multiple Processes” owing to 

Context Switching by CPU and/or Resource Contention at Nodes.

Minimal Process, Multiple Nodes

Minimal Nodes, Multiple Process



Contrasting Serial vs 
Parallel Running Times

• Varied the vertices of the Graph

keeping the number of nodes

constant (40).

• With 6000 vertices, Sequential

process takes around 312s whereas

Parallel takes around 11.90s.

16



Speed Up 

• Calculated using Tseq / Tparallel.

• For 2000 vertices, the max speedup

of 13 comes around when 20

processes work in parallel.

• For 4000 vertices, speedup of 23

comes around with 40 processes.

After which communication overtakes

computation and the speedup

decreases.

• For 10,000 vertices, max speedup

might come later (couldn’t compute due to

limited computational resources). 17



Cost

• Shows effect of cubic-algorithm complexity.

• Calculated using 

Number of Processes * Tparallel

18



Planning for Block Based Floyd-Warshall

19



Progress Report

1. Looking into - sbatch: error: Batch job submission failed: Requested node configuration is not available for 

requesting more than 140 nodes – Infiniband has max spread of 140 nodes. Increased Processes 

thereafter. ✔

2. Draw Inferences and Calculate Speed Up – Done ✔

3. Trying to make the algorithm work for cases where number of rows is not completely divisible by number 

of processes. Exploring MPI_Scatterv and MPI_Gatherv for that – Done. ✔

4. Next, I intend to work upon negative cycle detection – Done. ✔

5. Block-based Floyd-Warshall to find out if it performs better than the row-based parallelization? –⏳

20



What’s next ?

1. Implement Block-based Floyd-Warshall

2. Find out if Block Based parallelization performs better than the row-based parallelization? 

3. Have an Open MP implementation

4. Use Open MP and MPI collectively to implement Floyd-Warshall and make observations

21



References 

1. Kang, S. J., Lee, S. Y., & Lee, K. M. (2015, August 4). Performance comparison of openmp, MPI, and 

mapreduce in practical problems. Advances in Multimedia. Retrieved March 20, 2023, from 

https://www.hindawi.com/journals/am/2015/575687/

2. Case Study on Shortest-Path Algorithms. (n.d.). Retrieved March 20, 2023, from 

https://www.mcs.anl.gov/~itf/dbpp/text/node35.html

3. MPI Tutorials. Tutorials · MPI Tutorial. (n.d.). Retrieved March 24, 2023, from 

https://mpitutorial.com/tutorials/ 

4. Dr. Matthew D. Jones. Lectures on MPI & CCR 

5. Striver, https://takeuforward.org

6. GeeksForGeeks, https://www.geeksforgeeks.org/detecting-negative-cycle-using-floyd-warshall/

https://takeuforward.org/


Thank You


