
PARALLEL N-BODY
SIMULATION
Pratik Chavan

CSE- 633 - Parallel Algorithms

Mentor: Dr. Russ Miller

What is it?
N-body problem is a scientific problem in which we try to determine the motions of a group of celestial

bodies or objects interacting with each other gravitationally.

2

Problem Statement
Given n number of bodies with mass, initial position and velocity for each, we predict their interactive forces,

and consequently, predict their true orbital motions for all future times.

Why?

3

1. Solving this problem is interesting and
challenging if …

2. Calculating for n-bodies can get
chaotic, why?

3. Simulation has always been the way!

4. Parallelizing can help, how?

Let's start from the basics
• Given: n bodies, masses [𝑚!, 𝑚", …𝑚#], initial positions [𝑝!, 𝑝", … 𝑝#] and velocity [𝑣!, 𝑣", … 𝑣#]

• Calculate the acceleration by summing up the Gravitational forces on a particular
body/particle by using;

• Now, after each time step t, we calculate the displacement and the final velocity

𝑡 + $
!𝑝 − $

%𝑝 = △ 𝑥 = $
%𝑣 △ 𝑡 +

1
2 $
%𝑎 △ 𝑡"

𝑡 + $
!𝑣 − $

%𝑣 = △ 𝑣 = $
%𝑎 △ 𝑡

4

Parallel Solution
• For a given time t

• The master core reads input data and broadcasts using MPI_Bcast to all the child processors.

• Each child processor receives the data { mass, position and velocity } and works on the updating of the
position and velocity.

• Each child processor will also collect data from other bodies to calculate the force exerted after each time
step t

• We repeat this process for time t

5

Runtime: O(𝑛!. 𝑖/𝑝) 𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑛𝑜. 𝑜𝑓 𝑏𝑜𝑑𝑖𝑒𝑠 𝑖 = 𝑛𝑜. 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑝 = 𝑛𝑜. 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

If it’s still O(𝑛") then why parallelize? Remember Gustafson’s Law

Programming Layout
• Generate random mass, velocity and position vectors and initialize the first input structure as:

[Mass, (x_coordinate, y_coordinate), (velocity_x, velocity_y)]

• Divide n bodies/particles across p processors, making each processor work on each body
independently using MPI_Scatter.

• After calculating the displacement at time t, this output as given as input to other processors via
MPI_Allgather.

• The same process of calculating the acceleration and displacement is repeated for time t.

6

Process Layout

7

• The master reads the initial input data and

broadcasts to all the the child processors

• Using MPI_Scatter the data is divided amongst the

child processors.

• Then, for t-steps i.e., iteration the child processors

do the computation and send the data to other

processors using MPI_Allgather

• The process is made to wait until all other

processors call MPI_Allgather using MPI_Barrier.

• Finally, the master collects the data by calling

MPI_Gather and outputs it into the output file.

Results for fixed n values

8

Results for varying problem size

9

Conclusion
• We see a U curve formation for a fixed n and large number of processors because of the higher

number of communication calls between processes i.e. Amdahl’s law.

• For increase in number of particles and constant number of processing elements we see a
increase in time.

• For higher problem sizes with a higher number of processing elements the solution scales very
well i.e., the solution works efficiently for large number of particles.

10

References
• n-body problem - Wikipedia

• Newton’s three-body problem explained - Fabio Pacucci | TED-Ed

11

https://en.wikipedia.org/wiki/N-body_problem
https://ed.ted.com/lessons/newton-s-three-body-problem-explained-fabio-pacucci

THANK YOU

