
KNUTH-MORRIS-
PRATT
Exploring the KMP algorithm for pattern matching

Priya Rao (UB IT Name: prao4)

2

Problem Statement

String matching applications are all around us – ranging from DNA pattern matching to plagiarism

detection.

Not all algorithms fare well when it comes to matching patterns against an extremely large string.

Especially when implementing in sequential. In parallel as well, a naïve algorithm would not provide

the best results.

3

Knuth Morris Pratt

KMP algorithm provides an advantage - It is guaranteed worst-case efficient.

As observed for the sequential algorithm:

The preprocessing time is always O(m)

The searching time is always O(n)

4

How does KMP work?

• There are two main aspects to KMP:

1. Pre-processing : This involves parsing through the pattern alone (O(M) time and

space) – an array of prefix-suffix match is created

2. Searching : This involves parsing through the string using the pre-processed array

and the pattern array (O(N) time)

5

Pre-processing

The length of the longest proper prefix in the (sub)pattern that matches a proper suffix in the same

(sub)pattern.

Example for cell with index 5. Sub-pattern is "abacab"

Proper Prefix: a, ab, aba, abac, abaca

Proper Suffix: b, ab, cab, acab, bacab

Let us find out the common string in proper prefix and proper suffix. We get "ab".

Length of longest one (here the only one common) is 2.

Therefore, value of cell with index 5 is 2.

6

Pattern Searching

7

Parallel Approach

The approach for the parallel implementation of KMP is as follows:

1. Split the main string (of length S) into sub-strings per processor such that each processor

gets (S/N) length of string where N is the number of processors

2. Apply the serial KMP Search algorithm in each of the processors, keeping a track of the

“perfect” matches so far

3. Concatenate the results by doing a prefix sum. Nth processor would contain the final count.

8

Parallel Approach

4. In case of a partial match in processor 1, this processor would send the length of the partial

pattern to the next processor (processor 2).

5. If processor 2 has received this partial length, then it checks for pattern[length – partial length]

at the beginning of the string it has.

6. If this is found as a match, then increment the count and the start index of the matched pattern

would be at current index – pattern length.

9

Results (S = 1 M, P = 100)

Processors Seconds

2 16.9

4 9.5

8 6.3

16 4.6

32 3.5

64 3.0

128 8.9

10

Results (S = 100 M, P = 100)

Processors Seconds

2 34.3

4 22.9

8 15.7

16 10.3

32 7.1

64 5.4

128 4.4

11

Results (S = 1 M, P = 10000)

Processors Seconds

2 16.24

4 9.5

8 5.9

16 4.4

32 4.2

64 3.2

128 9.0

12

Results (S = 100 M, P = 10000)

Processors Seconds

2 37.8

4 25.7

8 16.0

16 10.8

32 6.1

64 3.6

128 3.2

13

Observations

• Parallelization resulted in a significant speed up of the algorithm.

• Parallelization performed almost similarly for any length of the pattern and any number of

occurrences of the pattern in the string

• After a certain point though increasing the number of processes causes a communication

overhead which results in increased/stagnation of time

14

Challenges

• No documentation to address scenario which handles a pattern itself being so large that it

does not fit into a single processor

• Queueing time for large number of processors

• Generating large strings for this purpose

15

References

https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/kmpen.htm

https://web.stanford.edu/class/cs97si/10-string-algorithms.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.8768&rep=rep1&type=pdf

https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/

https://curc.readthedocs.io/en/latest/programming/MPI-C.html

https://ieeexplore.ieee.org/document/6618720

https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/kmpen.htm
https://web.stanford.edu/class/cs97si/10-string-algorithms.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.258.8768&rep=rep1&type=pdf
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://curc.readthedocs.io/en/latest/programming/MPI-C.html
https://ieeexplore.ieee.org/document/6618720

16

Thank You

