Implementation of Parallel Quick Sort
using MPI

CSE 633: Parallel Algorithms
Dr. Russ Miller

Deepak Ravishankar Ramkumar
50097970

Recap of Quick Sort

Given a list of numbers, we want to sort the numbers in
increasing or decreasing order.

On a single processor the unsorted list is in its primary
memory, and at the end the same processor would contain the
sorted list in its primary memory.

Quicksort is generally recognized as the fastest sorting
algorithm based on comparison of keys, in the average case.

Quicksort has some natural concurrency.

Sequential quicksort algorithm:

Select one of the numbers as pivot element.

Divide the list into two sub lists: a “low list and a “high list”

The low list and high list recursively repeat the procedure to
sort themselves.

The final sorted result is the concatenation of the sorted low
list, the pivot, and the sorted high list

{4.11,14,17,22,63,65,79,89 95} 1

Q('79 17.14,65,89.4.95.22,63,11)
(4.11,14,17,22.63, 6‘/ 3{89'95'
Q(17,14 65,422 63,11) Q(89.95)
14,1 1.34//\ ‘3{22.63.65}\‘3 (95)

Q14.4.11) QX65,22.63) Q(9s)
(14.11) ([22.63) (

Q4. ll) Q(22.63}

(i1 \ {63)

Q(11) Q63

Algorithm for Parallel Quick Sort

Start off assuming that the number of processors are a power
of two.

At the completion of the algorithm,
(I) the list stored in every processor's memory is sorted, and

(2) the value of the last element on processor Pi is less than or
equal to the value of the first element on Pi+1.

Parallel quicksort algorithm

Randomly choose a pivot from one of the processes and
broadcast it to every process.

Each process divides its unsorted list into two lists: those
smaller than (or equal) the pivot, those greater than the pivot

Each process in the upper half of the process list sends its “low
list” to a partner process in the lower half of the process list
and receives a “high list” in return.

The processes divide themselves into two groups and the
algorithm is recursive.

Now, the upper-half processes have only values greater than
the pivot, and the lower-half processes have only values
smaller than the pivot.

After log P recursions, every process has an unsorted list of
values completely disjoint from the values held by the other
processes.

The largest value on process i will be smaller than the smallest
value held by processi + 1.

Each process now can sort its list using sequential quicksort.

0
i

tirrreprncens

v

0

1
_r
\

0

)

Upper “hull™

a

(]
\

(c)

(ay

o i
x >
u\&
t§>

1

a_ |
- 3 >

4th “guarter”

0

)

mee menbat

L

4rd ~guarter”

(d)

2nd “guarter”

I st “'quarter”

(e}

L3

Readings for 1 Million Numbers

A B C D : F G
1 [Num of Processors Readingl Reading2 Reading3 Reading4 Reading5 |Average
2 1 0486137 0479304 0.498915 0.459345 0.481175 0.48098
3 2 0405326 0406831 0.407008 0.412961 0.403531r 0.40713
4 4 0337033 0357055 0333783 0342317 0333216 034068
5 8 0291766 0.280861 0.296402 0.281548 0.287‘413r 0.2876
6 16 036568 0.374642 0.362062 0.365493 0.358666r 0.36531
] 3) 0649314 0298465 0435157 0272094 0278392 0.38668
8 64 0621614 0578988 0.612795 0.633433 0.620268r 0.61342
9 128 1.09468 124556 11024 1.0973 1.21765r 1.15152
10 256 1.96445 187924 179648 177215 171713 182589

l_'l.
l_'l.

1.6

1.4

1.2

1

0.8

0 4809752
0.4071314

Nodes vs time
1 Million Data Items

0.3406808 0.3653086

0. 3866844

0.6134196
|

.151518
|

1.82589

Readings for 10 Million Numbers

W 0o ~] O un B D M

—_
_ OO

A B C D ; F G
Num of Processors Reading1 Reading2 Reading3 Reading4 Reading5 Average
1 563154 7.55708 559229 5.2965 5.61848r 5.93918
2 363402 3.65614 3.60379 3.7325 3.69719r 3.66473
4 3.08463 3.08168 3.19005 3.17345 3.18753r 3.14347
8§ 3.2309 284125 291948 3.2931 2.86998r 3.03095
16 279442 419635 416732 766447 458758 468203
32 4.09503 722516 69171 8.04961 8.15057r 6.88749
64 10.9961 566727 158492 5.90791 9.70833r 9.62576
128 9.76145 10.1217 109627 9.4038 12.8083r 10.6116
256 154053 157564 154962 15,616 15.5478r 15.5643

Nodes vs time
10 Million Data Items

15.56434

10.61159
|

9.625762

8 6.887494
5.939178

4.682028
3.664728

3.143468 3. 030954

fe || Average

Readings for 50 Million Numbers

D

E

F

G

00O B~ MNP

16
32
64
128
256

A
1 Num of Processors
2
3
4
5
6
7
8
9
10
11

B C
Reading1 Reading 2
30.9067 28.4611
19.6237 19.1829
23.9516 23.3604
14,1024 13.6956
12.3328 12.1905
11.5322 11.1226
243776 24.0729
39.7297 39.2354
18.6667 79.8285

28.1991
204774
22.8615
13.6535
12.1798
11.2357
24.2584
39.0507
18.2345

28.4471
19.1715
22.5307
13.7426
12.1843
11.0757
24,5718
39.0437
80.0237

30.9821

19.1127
22,6656
137267
121892
109717
241861
39.8945
787782

Reading3 Reading4 Reading5 Average

29.3992
19.5136

23.074
13.7842
12.2153
11.1876
24.2946
39.3908
79.1063

80

72

64

56

48

40

32

24

1

29.39922

19.51364

Nodes vs time
50 Million Data Items

23.07396

13.78416 12.21532

24.29456

79.10632

39.3908

1

2

4 8 16

11.18758
'I
32 64

128 25

6

Readings for 100 Million Numbers

A B C D ; F G
1 |Numof Processors ~ Reading 1 Reading2 Reading3 Reading4 Reading5 |Average
2 1 69.3125 604611 604283 628341 63.9237 63.3919
3 2 513782 50.4934 50.5294 523765 50.2241r 51.0003
4 4 448693 448474 447109 44.4998 ‘f'.tf'..th'.r 44,6335
5 8§ 415838 389771 391323 39.1884 39.7165r 39.7196
6 16 315832 23.0936 23.1187 247625 23.1056r 25.1327
] 32 414321 37.7752 36.2429 38.8732 37.6523r 38.3951
8 64 65.2272 66.792 68235 66.145 67.2‘456r 66.729
9 128 113.61 126206 128456 117.64 121.743r 121,531
10 256 214938 234765 25426 203.567 174.852r 216.476

—
—

Nodes vs time
100 Million Data Items

216.4764

(VARRY
|

3 4 !
75 63.3919 66.72896

/ |
51.00032 44.63348
25.13272
25 '
1 2 4 8 16 32 64

0

240

220

200

180

160

140

120

100

80

60

40

20

Sequential vs Parallel Speed up

—

1 Million

=@=ParalleL Best Case

+

10 Million

- Sequential

50 Million

=smParallel Worst Case

/

100 Million

Take away

This parallel quicksort algorithm is likely to do a poor job of
load balancing.

Even if one processor has work to do all the other processes
have to wait for it to complete.

Also faced deadlock problems and had to make sure that the
blocking functions in MPl were used correctly.

In order to achieve better performance its critical to identify
the optimal number of processors that would be required for
any given computation.

References

Miller Algorithms Sequential and Parallel A Unified Approach 3rd
edition

Parallel Programming in C with MPl and OpenMP by Michael J. Quinn

» Thank you.

