
Implementation of Parallel Quick Sort 

using MPI

CSE 633: Parallel Algorithms

Dr. Russ Miller

Deepak Ravishankar Ramkumar

50097970



Recap of Quick Sort

• Given a list of numbers, we want to sort the numbers in 
increasing or decreasing order.

• On a single processor the unsorted list is in its primary 
memory, and at the end the same processor would contain the 
sorted list in its primary memory. 

• Quicksort is generally recognized as the fastest sorting 
algorithm based on comparison of keys, in the average case.

• Quicksort has some natural concurrency.



Sequential quicksort algorithm:

• Select one of the numbers as pivot element.

• Divide the list into two sub lists: a “low list and a “high list” 

• The low list and high list recursively repeat the procedure to 

sort themselves.

• The final sorted result is the concatenation of the sorted low 

list, the pivot, and the sorted high list





Algorithm for Parallel Quick Sort

• Start off assuming that the number of processors are a power 

of two.

• At the completion of the algorithm, 

• (I) the list stored in every processor's memory is sorted, and 

• (2) the value of the last element on processor Pi is less than or 

equal to the value of the first element on Pi+1.



Parallel quicksort algorithm

• Randomly choose a pivot from one of the processes and 
broadcast it to every process.

• Each process divides its unsorted list into two lists: those 
smaller than (or equal) the pivot, those greater than the pivot

• Each process in the upper half of the process list sends its “low 
list” to a partner process in the lower half of the process list 
and receives a “high list” in return.

• The processes divide themselves into two groups and the 
algorithm is recursive.



• Now, the upper-half processes have only values greater than 

the pivot, and the lower-half processes have only values 

smaller than the pivot.

• After log P recursions, every process has an unsorted list of 

values completely disjoint from the values held by the other 

processes.

• The largest value on process i will be smaller than the smallest 

value held by process i + 1.

• Each process now can sort its list using sequential quicksort.





Readings for 1 Million Numbers



0.4809752

0.4071314
0.3406808

0.287598
0.3653086

0.3866844

0.6134196

1.151518

1.82589

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64 128 256

Nodes vs time

1 Million Data Items

Time



Readings for 10 Million Numbers



5.939178

3.664728
3.143468 3.030954

4.682028

6.887494

9.625762
10.61159

15.56434

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16 32 64 128 256

Nodes vs time

10 Million Data Items

Time



Readings for 50 Million Numbers



29.39922

19.51364
23.07396

13.78416
12.21532 11.18758

24.29456

39.3908

79.10632

0

8

16

24

32

40

48

56

64

72

80

1 2 4 8 16 32 64 128 256

Nodes vs time

50 Million Data Items
Time



Readings for 100 Million Numbers



63.39194

51.00032
44.63348

39.71962

25.13272

38.39514

66.72896

121.531

216.4764

0

25

50

75

100

125

150

175

200

1 2 4 8 16 32 64 128 256

Nodes vs time

100 Million Data Items
Time



0

20

40

60

80

100

120

140

160

180

200

220

240

1 Million 10 Million 50 Million 100 Million

Sequential vs Parallel Speed up 

ParalleL Best Case Sequential Parallel Worst Case



Take away

• This parallel quicksort algorithm is likely to do a poor job of 
load balancing.

• Even if one processor has work to do all the other processes 
have to wait for it to complete.

• Also faced deadlock problems and had to make sure that the 
blocking functions in MPI were used correctly.

• In order to achieve better performance its critical to identify 
the optimal number of processors that would be required for 
any given computation.



References

• Miller Algorithms Sequential and Parallel A Unified Approach 3rd 

edition

• Parallel Programming in C with MPI and OpenMP by Michael J. Quinn 



 Thank you.


