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Recap of Quick Sort

• Given a list of numbers, we want to sort the numbers in 
increasing or decreasing order.

• On a single processor the unsorted list is in its primary 
memory, and at the end the same processor would contain the 
sorted list in its primary memory. 

• Quicksort is generally recognized as the fastest sorting 
algorithm based on comparison of keys, in the average case.

• Quicksort has some natural concurrency.



Sequential quicksort algorithm:

• Select one of the numbers as pivot element.

• Divide the list into two sub lists: a “low list and a “high list” 

• The low list and high list recursively repeat the procedure to 

sort themselves.

• The final sorted result is the concatenation of the sorted low 

list, the pivot, and the sorted high list





Algorithm for Parallel Quick Sort

• Start off assuming that the number of processors are a power 

of two.

• At the completion of the algorithm, 

• (I) the list stored in every processor's memory is sorted, and 

• (2) the value of the last element on processor Pi is less than or 

equal to the value of the first element on Pi+1.



Parallel quicksort algorithm

• Randomly choose a pivot from one of the processes and 
broadcast it to every process.

• Each process divides its unsorted list into two lists: those 
smaller than (or equal) the pivot, those greater than the pivot

• Each process in the upper half of the process list sends its “low 
list” to a partner process in the lower half of the process list 
and receives a “high list” in return.

• The processes divide themselves into two groups and the 
algorithm is recursive.



• Now, the upper-half processes have only values greater than 

the pivot, and the lower-half processes have only values 

smaller than the pivot.

• After log P recursions, every process has an unsorted list of 

values completely disjoint from the values held by the other 

processes.

• The largest value on process i will be smaller than the smallest 

value held by process i + 1.

• Each process now can sort its list using sequential quicksort.





Readings for 1 Million Numbers
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Readings for 10 Million Numbers
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Readings for 50 Million Numbers
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Readings for 100 Million Numbers
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Take away

• This parallel quicksort algorithm is likely to do a poor job of 
load balancing.

• Even if one processor has work to do all the other processes 
have to wait for it to complete.

• Also faced deadlock problems and had to make sure that the 
blocking functions in MPI were used correctly.

• In order to achieve better performance its critical to identify 
the optimal number of processors that would be required for 
any given computation.
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