
LONGEST COMMON

SUBSEQUENCE
Parallelizing LCS through Anti-Diagonal

Approach

Name : Saema Nadim

Person# 50469138

Instructor : Dr. Russ Miller

CONTENT
➢ What is LCS?

➢ It’s Applications

➢ Example of LCS

➢ Sequential Approach

➢ Need for parallelization

➢ Parallel Approach

➢ Changes after last presentation

➢ Results and Graphs (Sequential, Parallel, Comparison, Speedup)

➢ Observations

➢ References

What is LCS?

• As the name suggests, this algorithm is used to find Longest Common

Subsequence among two or more strings.

• It uses a dynamic programming approach to do so. It can also use recursion but

DP is faster and more efficient.

• The solution for each comparison depends on the solution of previous

comparisons.

• It is an NP-Hard problem if arbitrary number of sequences are provided as input,

but for constant number of sequences it can be solved in polynomial time.

3

It’s Applications

It has wide amount of real world applications:

- finding similar regions of two nucleic acid sequences – like DNA

- in the Computer Science field to compare two codes in git while merging.

- in Computational Linguistics

- even in algorithms to detect AI, since it can detect similar texts!

4

Example

Consider two strings of length

10 –

1.String1: QTSRTTTSTR

2.String2: SQSTTRQSTT

5

Q T S R T T T S T R

S Q S T T R Q S T T

Their Longest Common Subsequence is highlighted with red. It will be QSTTST.

Sequential Approach

• LCS is usually solved using Dynamic Programming.

• The matrix is filled row wise under two nested for loops, where

in one loop ‘i’ iterates from 0 to m(length of String1) and in the

next loop ‘j’ iterates from 0 to n(length of String2).

• The time and space complexity is O(m*n).

6

Sequential Approach

• The value of each element is calculated using following formula-

𝑑𝑝 𝑖 𝑗 =

0 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0
𝑑𝑝[𝑖 − 1][𝑗 − 1] + 1 𝑖𝑓 𝑆𝑡𝑟𝑖𝑛𝑔1[𝑖] = 𝑆𝑡𝑟𝑖𝑛𝑔2[𝑗]

max 𝑑𝑝 𝑖 − 1][𝑗 , 𝑑𝑝 𝑖][𝑗 − 1 𝑖𝑓 𝑆𝑡𝑟𝑖𝑛𝑔1 𝑖 ≠ 𝑆𝑡𝑟𝑖𝑛𝑔2[𝑗]

It can be seen that each element’s value depends on its previous

diagonals.

• The last bottom right value of the calculated matrix tells us the

length of LCS, and the matrix can be traced back from the last

element to find the required subsequence.

7

dp[i-1][j-1] dp[i-1][j]

dp[i][j-1] dp[i][j]

My Sequential Approach

• As seen earlier, we fill the matrix row wise and it makes it difficult

to parallelize the algorithm.

• I have just changed the way we fill the matrix, the formula used

is the same.

• In my algorithm, we are iterating through each diagonal of the

matrix represented by ‘line. For each diagonal, its start_row and

end_row is calculated.

• We need to iterate through the rows and fill the elements of the

diagonal using the formula of previous slide.

8

My Sequential Approach

Each black arrow represents the

direction of iteration.

Time

Need for parallelization

• Reduced computation time: The computation of the LCS is a computationally expensive task,

especially for long input sequences. Parallelizing the computation can help reduce the computation

time by distributing the workload across multiple processors or computing nodes.

• Better resource utilization: Parallelization allows better utilization of available computing resources,

such as multi-core processors or clusters.

• Scalability: As the size of the input increases, parallelization allows us to handle larger inputs while

still achieving reasonable computation times.

• Improved efficiency: Parallel algorithms can reduce the time to solution, and allow researchers to

perform larger or more complex analyses in the same amount of time.

Parallel Approach

• Parallel Approach is similar to previous

sequential approach such that each element

of every diagonal is iterated in the direction of

arrow.

• Each diagonal is divided into all available

processes using a simple formula.

Parallel Approach

• The boundary values are exchanged through

MPI_Send and MPI_Recv to the adjacent processes.

• In the given example, 4 processes are used -

Process 0 is represented by Pink,

Process 1 is represented by Orange,

Process 2 is represented by Yellow, and

Process 3 is represented by Blue.

• When the process is calculating it’s part of the matrix

(eg. Process 1), it receives the last boundary value of

previous process (eg. Process 0) and first boundary

value of next process(eg. Process 2). It also sends

it’s own boundary values to those processes.

Output Screen

• This is my output screen for 32 Nodes.

• The length of each string is 100000

characters.

Changes after last presentation

14

• Earlier, I was using 1 node and multiple processors. I could run my algorithm till

64 processors. Now, I have used 1 Node per processor and I could go till 128

Nodes.

• Earlier I took max input length of 2000, now I have taken the max input length

of 100,000.

• Used a slurm script.

• Compared Sequential and Parallel execution.

• Calculated Speedup.

Results for Sequential Approach
Size of Input Time (in s)

10 0.00000408

50 0.000054614

100 0.00010246

1000 0.02062343

10000 0.61874786

20000 3.284738392

30000 7.485478848

40000 16.8582492

50000 21.6216583

60000 31.07484096

70000 43.769907

80000 60.822275

90000 83.3521512

100000 112.123667 15

Results for Parallel Approach (small input size)

Number of

Processors

Time (in s) for

Input size 10

Time (in s) for

Input size 100

2 0.00199635 0.01138207

4 0.00368789 0.0040272

8 0.01609147 0.00588514

16 0.02928861 0.00793963

32 0.00538751 0.04484502

64 0.13329603 0.11810985

16

Results for Parallel Approach (large input size)
Numbe

r of

Nodes

Time (in s)

for Input

size 10000

Time (in s)

for Input

size 20000

Time (in s)

for Input

size 30000

Time (in s)

for Input

size 40000

Time (in s)

for Input

size 50000

Time (in s)

for Input

size 60000

Time (in s)

for Input

size 70000

Time (in s)

for Input

size 80000

Time (in s)

for Input

size 90000

Time (in s)

for Input

size100000

2 0.52578763 2.681668937 6.268362552 11.19016013 16.90770924 24.78136885 34.72393444 52.09097353 50.5329981 107.9106947

4 0.488477363 1.973840537 4.153437258 7.979478955 11.56600832 15.96001254 21.68704922 30.04386666 37.89914124 43.24429724

8 0.685008492 2.345982661 4.569211543 7.454193071 10.88848518 16.00331206 20.3369828 31.8711065 37.23287834 37.23287834

16 0.945190889 2.7905281 5.650291473 8.953158803 12.8032219 17.19117304 22.4127304 27.71922095 33.90865398 39.99139587

32 1.072783828 3.284945664 6.297263918 9.744897762 13.93548397 18.81471166 23.94909021 29.17512206 35.3446107 41.65420104

64 1.720764667 4.705545232 8.90961194 13.40302478 18.84167263 24.86627807 31.5650644 38.41239001 48.13711712 49.30719847

128 2.54637876 5.332577586 9.61329776 14.33292146 19.75645659 26.14938322 32.94326906 40.0063902 46.44143647 53.22557095

17

Results for Parallel Approach (large input size)

18

Comparison of Sequential and Parallel
Execution

19

Here, I have compared

sequential execution graph

with graphs obtained using

parallel execution on

32 Nodes and 64 Nodes.

Speedup Graph

20

• Speedup is the execution time of a

sequential program divided by the

execution time of a parallel program

that computes the same result.

• Speedup = Tsequential / Tparallel

Observations

21

• The graph of the sequential algorithm keeps increasing.

• It can be seen that for less number of processors, the graph of the time taken

by the parallel algorithm is similar to the sequential algorithm graph.

• As the processor increases, the time taken decreases but till a certain point of

time.

• After a point, time starts increasing again due to communication overhead

between processes.

References

22

• http://personales.upv.es/thinkmind/dl/conferences/infocomp/infocomp_2011/infocomp_2011_7_

20_10120.pdf

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458724/#CR14

• https://www.researchgate.net/publication/332352052_An_OpenMP-

based_tool_for_finding_longest_common_subsequence_in_bioinformatics

• https://ieeexplore.ieee.org/document/8326619

http://personales.upv.es/thinkmind/dl/conferences/infocomp/infocomp_2011/infocomp_2011_7_20_10120.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458724/#CR14
https://www.researchgate.net/publication/332352052_An_OpenMP-based_tool_for_finding_longest_common_subsequence_in_bioinformatics

23

Thank You!

