SOLVING N-BODY PROBLEM USING PARALLEL APPROACH

Sakshi Singhal CSE 633 – Parallel Algorithms Guided By: Dr. Russ Miller

University at Buffalo The State University of New York

Content

- Problem Statement
- How we can solve the problem sequentially
- What is the Parallel Approach to solve the problem
- Result/ Output of some experiments
- Conclusion & Future Scope

Problem Statement

Initializing the random masses, velocities, positions of N particles we try to calculate forces present between them, as a result, their actual orbital movements for all possible periods after certain iterations.

Sequential Algorithm

- 1. Consider taking input as number of particles having masses $(m_1, m_2, m_3, \dots, m_n)$, initial velocities $(v_1, v_2, v_3, \dots, v_n)$ and their positions vector (that means in x and y coordinate $(p_1, p_2, p_3, \dots, p_n)$
- 2. Newton's second law of motion states that mass times acceleration $m_i d^2 \mathbf{q}_i / dt^2$ is equal to the sum of the forces on the mass.

But Newton's law of Gravity says that the gravitational force felt on mass

 m_i by a single mass m_j is given by $F_{ij} = \frac{Gm_im_j}{||p_j - p_i||^2} \frac{(p_j - p_i)}{||p_j - p_i||} = \frac{Gm_im_j(p_j - p_i)}{||p_j - p_i||^3}$ But to calculate force on n particle we need to calculate summation of forces of (n-1) particles on n and this will lead to time complexity of $O(n^2)$

Parallel Algorithm

- Defining the number of particles and evenly distributing it across processors.
- These particles have masses, velocity and position vector.
- Calculate force on each particle due to all other particles from both the directions.
- Once we have calculated force of each particle, we will send the data back to all the processor and update the position and velocity and then again calculate the force.
- Repeat this till time 't' iterations.
- Below are the main MPI Functions used

MPI_Bcast, MPI_Scatter, MPI_Barrier, MPI_Allgather, MPI_Gather

How does it take place:

Parallel execution during the midterm results

particles=100, iterations=200						
Processors	Time(seconds)					
2	47.17105					
2	43.360829					
6	39.96194					
8	37.619051					
10	33.976331					
12	31.098934					
14	27.348912					
16	23.398761					
18	19.329021					
20	18.099923					
24	15.340203					
28	3 11.323444					
32	8.0912884					
36	6.756678					
44	6.6655433					
48	5.2356789					
56	10.786663					
58	3 11.8998877					
60) 13.09					

7

Experiment on fixed number of Particles and Iteration on 1 core per node

Particles=5000	Iteration=7000			
Node	Core Per Node	Processing Element=(Node * Code Per Node)	Time (in seconds)	
2	1	2	257.991	
4	1	4	139.216	
8	1	8	79.8435	
10	1	10	67.8278	
16	1	16	51.8945	
20	1	20	48.3652	
24	1	24	46.4500	
28	1	28	41.2097	
32	1	32	36.1134	
64	1	64	21.4328	
90	1	90	16.2389	

Experiment on fixed number of Particles and Iteration on multiple core per node

Particles=8000	Iterations=7000				900 —
					800 —
Node	Core Per Node	P E	rocessing lement=(Node	Time (in	700 —
		Ñ	lode)	seconds)	sp 600 —
					မ္တိ 500 —
	2	2	4	775.8501	⊆ 400 —
	2	4	8	185.0405	e(i
	4	6	24	140.3759	<u> </u>
	4	8	32	108.9103	⊢ ₂₀₀ _
	6	10	60	70.82313	200
	6	12	72	52.00095	100 —
	8	14	112	58.2785	0
	8	16	128	51.83277	0 —
	10	18	180	48.39373	
	10	20	200	42.55528	
	12	22	264	33.81453	

Experiment to see increase in number of particles keeping PE constant

Iteration=10000				
Particles	Node	Core Per Node	Processing Element=(Node * Code Per Node)	Time (in seconds)
100	4	1	4	0.7074
500	4	1	4	4.67098
1000	4	1	4	12.8379
5000	4	1	4	198.786
10000	4	1	4	736.724
100	8	1	8	0.70442
500	8	1	8	2.91603
1000	8	1	8	6.04038
5000	8	1	8	50.6734
10000	8	1	8	397.281
100	16	1	16	0.8959
500	16	1	16	3.11082
1000	16	1	16	5.98086
5000	16	1	16	35.0035
10000	16	1	16	227.368
100	32	1	32	1.06811
500	32	1	32	3.2483
1000	32	1	32	6.082
5000	32	1	32	28.7501
10000	32	1	32	70.6746

Sequential Execution keeping Iteration constant

Iteration=7000				
Particles	Nodes	Core Per Node	PE	Time
20	0 1	1	1	0.677564
40	0 1	1	1	1.465859
50	0 1	1	1	2.218085
80	0 1	1	1	7.223454
100	0 1	1	1	12.95424
120	0 1	1	1	48.3492
140	0 1	1	1	56.39432
160	0 1	1	1	76.95455
250	0 1	1	1	133.2046
350	0 1	1	1	247.2937
375	0 1	1	1	278.1287
400	0 1	1	1	320.6927

Parallel Execution keeping Iteration constant and Data per PE constant

12

Speedup

Speedup=(tsea/tp)					
Particles		Time(tsea)	Particles	Time(tp)	Speedup
	200	0.677564	200	1.16823	0.57999
	400	1.465859	400	2.942712	0.49813
	500	2.218085	500	3.897655	0.56908
	800	7.223454	800	5.400002	1.33767
1	1000	12.95424	1000	6.988643	1.85361
1	1200	48.3492	1200	13.58964	3.55779
1	1400	56.39432	1400	14.78836	3.81342
1	1600	76.95455	1600	16.92689	4.54629
2	2500	133.2046	2500	22.37975	5.95201
	<u>3500</u>	247.2937	3500	38.8636	6.36311
	3750	278.1287	3750	42.56784	6.53377
	4000	320.6927	4000	48.87955	6.56087

Conclusion

- As per Amdahl's law as the number of communication between particles increase the time decreases and that is what took place in the first graph for fixed number of particles and increase in processors we get U curve.
- In sequential execution and parallel execution keeping the iterations constant and increasing the number of particles we see increase in time.
- As per the Gustafson's Law, When the number of particles increases but the number of processing elements stays constant, we observe an increase in computation time.
- Speedup reaches a saturation at around 2500 Particles.

Future Work:

- Access nodes greater than 90 nodes with 1 core per node.
- Try implementing parallel approach using OpenMPI.

References

- <u>https://www.youtube.com/watch?v=vjUaNJqIWTs</u>
- https://en.wikipedia.org/wiki/N-body_simulation
- <u>https://curc.readthedocs.io/en/latest/programming/MPI-C.html</u>
- http://www.cs.toronto.edu/~wayne/research/thesis/msc/node24.html
- <u>http://www.dartmouth.edu/~rc/classes/intro_mpi/overview_parallel_prog.htm</u>
 <u>l#top</u>
- <u>https://gereshes.com/2018/05/07/what-is-the-n-body-problem/</u>

THANK YOU! ANY QUESTIONS?