

Parallelizing matrix multiplication

by
Sandeep Raghuraman
CSE 633 – Fall 2011

● Matrix multiplication of 2 matrices:

● C = A*B. C will have m rows and p columns.

●

● Sequential brute force algorithm takes O(m*n*p) time

Introduction

b
11

b
12

. . b
1p

b
21

b
22

. . b
2p

.

.

b
n1

b
n2

. . b
np

B = a
11

a
12

. . a
1n

a
21

a
22

. . a
2n

.

.

a
m1

a
m2

. . a
mn

A =

m * n n * p

(Picture source: http://en.wikipedia.org/wiki/Matrix_multiplication)

Test parameters

● Brute force sequential matrix multiplication run on a single processor/core

● Number of rows and columns were equal. Both matrices had the same dimensions

● Matrix dimensions ranged from 1000 to 10000 increasing in steps of 1000

● I used the 32-core nodes with 256 GB of RAM. Only 1 MPI process was used.

● The running time is for the computation part only(including communication between
nodes for computation). It does not include the time for distributing data to and
gathering data from the nodes that do computation.

Results

Matrix dimensions Running time
(seconds)

1000 11

2000 84

3000 373

4000 854

5000 2005

6000 2916

7000 5391

8000 6576

9000 11442

10000 12996

Each test was run 3 times and the average of the running times is
shown below:

Parallel version

● Use multiple nodes to perform computations in
parallel

● Each node works independently on different
sections of the matrix

How the work is split up

● Assume Q nodes are used

● A master node(MPI process with rank 0)
generates random matrix data allocates m/Q rows
from matrix A to each node. Each node also gets
the entire matrix B. The master node also
participates in the computation.

● So, node i gets rows from (i-1)*(m/Q)+1 to i*(m/Q)
of matrix A

a
11

a
12

. . a
1n

a
21

a
22

. . a
2n

.

.

a
m1

a
m2

. . a
mn

Master node

Node 1 Node 2 Node Q

● Each node multiplies the portion of A that it has
and the matrix B.

a
11

a
12

. . a
1n

a
21

a
22

. . a
2n

.

.

a
m/Q,1

a
m/Q,2

. . a
m/Q,n

b
11

b
12

. . b
1p

b
21

b
22

. . b
2p

.

.

b
n1

b
n2

. . b
np

● Each node i calculates the rows from

(i-1)*(m/Q)+1 to i*(m/Q) of the matrix C

● Basically, different portions of the matrix are
calculated in parallel

● The calculated results are sent back to the
master node which can store the final result in a
file

Assumptions

● Matrix dimensions are divisible by number of
MPI processes

Test parameters

● Matrix dimensions ranged from 1000 to 10000 increasing in steps of
1000

● Number of rows and columns were equal. Both matrices had the
same dimensions

● No. of processes used were 2,4,5,8,10,20,25,50

● I used the 32-core nodes with 256 GB of RAM

● For the 50 process test, used two 32-core nodes, for the others used
only one 32-core node

● Each test was run 3 times

● The running time is for the computation part only(including
communication between nodes for computation). It does not include
the time for distributing data to and gathering data from the nodes
that do computation.

Test results

2 4 5 8 10 20 25 50
0

1

2

3

4

5

6

Running times for parallel matrix multiplication of two 1000x1000 matrices

No. of MPI processes

R
u

n
n

in
g

 ti
m

e
 (

se
co

n
d

s)

Test results (contd.)

2 4 5 8 10 20 25 50
0

100

200

300

400

500

600

700

800

900

1000

Running times for parallel matrix multiplication of two 5000x5000 matrices

No. of MPI processes

R
u

n
n

in
g

 ti
m

e
 (

se
co

n
d

s)

Test results (contd.)

0 4 5 8 10 20 25 50
0

1000

2000

3000

4000

5000

6000

7000

8000

Running times for parallel matrix multiplication of two 10000x10000 matrices

No. of MPI processes

R
u

n
n

in
g

 ti
m

e
 (

se
co

n
d

s)

Second parallel version

● Instead of each node storing the entire matrix
B, each node can store p/Q columns of matrix
B. Thus, node i will have columns (i-1)*(p/Q)+1
to i*(p/Q)

● Each node then calculates a part of matrix C
using the data it has.

● Then, each node i passes the columns of B that
it has to node i+1. In the case of the Qth node,
it passes the columns it has to node 1. The
above step is repeated P times.

● Using this method, lesser memory per process is
required

● The running time might increase since some
communication is required between different
processors.

Test parameters

● Matrix dimensions ranged from 1000 to 10000 increasing in steps of
1000

● Number of rows and columns were equal. Both matrices had the
same dimensions

● No. of processes used were 2,4,5,8,10,20,25,50

● I used the 32-core nodes with 256 GB of RAM

● For the 50 process test, used two 32-core nodes, for the others used
only one 32-core node

● Each test was run 2 times

● The running time is for the computation part only(including
communication between nodes for computation). It does not include
the time for distributing data to and gathering data from the nodes
that do computation.

Test parameters

● Matrix dimensions ranged from 1000 to 10000 increasing
in steps of 1000

● Number of rows and columns were equal. Both matrices
had the same dimensions

● No. of processes used were 2,4,5,8,10,20,25,50
● I used the 32-core nodes with 256 GB of RAM
● For the 50 process test, used two 32-core nodes, for the

others used only one 32-core node
● Each test was run 2 times

Test results

2 4 5 8 10 20 25 50
0

1

2

3

4

5

6

7

Running times for parallel matrix multiplication of two 1000x1000 matrices

No. of MPI processes

R
u

n
n

in
g

 ti
m

e
 (

se
co

n
d

s)

Test results (contd.)

2 4 5 8 10 20 25 50
0

100

200

300

400

500

600

700

800

Running times for parallel matrix multiplication of two 5000x5000 matrices

No. of MPI processes

R
u

n
n

in
g

 ti
m

e
 (

se
co

n
d

s)

Test results (contd.)

2 4 5 8 10 20 25 50
0

1000

2000

3000

4000

5000

6000

7000

Running times for parallel matrix multiplication of two 10000x10000 matrices

No. of MPI processes

R
u

n
n

in
g

 ti
m

e
 (

se
co

n
d

s)

Comparison

1000 5000 10000
0

2000

4000

6000

8000

10000

12000

14000

Running time for matrix multiplication

For parallel programs ppn=10

Sequential
Parallel v1
Parallel v2

Matrix dimensions

R
u

n
n

in
g

 ti
m

e
 (

in
 s

e
co

n
d

s)

Speedup

1 2 4 5 8 10 20 25 50
0

10

20

30

40

50

60

Speedup calculated as sequential running time/parallel running time for
multiplication of two 5000x5000 matrices

No. of processes

Future work

● Allow arbitrary matrix dimensions and any
number of MPI processes

● Add the capability to read input from a file
● Use a more efficient sequential algorithm (like

Strassen's matrix multiplication)
● Use 1 process per node to minimize

communication. Use OpenMP to distribute work
among the processors/cores in each node.

References

● http://en.wikipedia.org/wiki/Matrix_multiplication

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

