
PARALLELIZED SUDOKU 
SOLVING ALGORITHM USING 

OpenMP

Sruthi Sankar

CSE 633: Parallel Algorithms
Spring 2014

Professor: Dr. Russ Miller



Sudoku: the puzzle

 A standard Sudoku puzzles contains 
81 grids :9 rows and 9 columns.

 9 non- overlapping blocks, each 
block consists of 3 rows and 3 
columns.

 Many strategies to solve Sudoku 
puzzles; solutions might not be 
unique, or might not even exist!

 The difficulty in solving is relative to 
the number of indices provided



Commonly used approaches

 Total number of valid Sudoku puzzles is approximately 6.671×1021 (9*9 matrix)

 Brute force technique- long time

 Simulated Annealing- only easy problems

 Linear system approach- hard to solve with fewer clues

 Artificial bee colony algorithm: division into 2 sets

 SAC Algorithm: Assigning values to each cell and backtracking



PROPOSED ALGORITHM

 Solving sudoku is proven to be an NP-complete problem.

 No serial algorithms that can solve sudoku in polynomial time.

 Use of humanistic algorithm to fill up as many empty cells as possible.

 This algorithm doesn’t guarantee a solution.

 If necessary, the brute force algorithm solves the rest of the puzzle.

 Four types of strategies to try and fill in numbers on the board.



PROPOSED ALGORITHM- 4 STRATEGIES

 ELIMINATION: This occurs when there is only one valid value for a cell. 

Therefore, that value must belong in the cell.

 LONE RANGER: This is a number that is valid for only one cell in a row, 

column, or box. There may be other numbers that are valid for that particular 
cell, but since that number cannot go anywhere else in the row, column, or box, 
it must be the value for that cell.



PROPOSED ALGORITHM- 4 STRATEGIES

 TWINS: These are a pair of numbers that appear together twice in the same two cells and 

only in those two cells. When twins are found, all other numbers can be eliminated as 
possible values for that cell.

The top row depicts a row where the highlighted cells contain twins. The bottom row shows the 
possible values left for those cells after the twins rule has been applied. In the top row, 5 and 7 
show up together twice and only twice in the row. Because they are twins, the 3 and 6 that were 
valid values for those highlighted cells can now be eliminated as possible values.



PROPOSED ALGORITHM- 4 STRATEGIES

 TRIPLETS: Triplets follow the same rules as twins, except with three values over three 

cells.

The top row depicts a row of a sudoku board before triplets is applied. The bottom row is 

the resulting valid values after triplets has been applied. In the top row, 1, 2, and 4 only 

appear three times in the row and they all appear in the exact same three cells, so they are 

triplets.



PROPOSED ALGORITHM- 4 STRATEGIES



PROPOSED ALGORITHM

 Each strategy is applied one at a time.

 If a strategy makes a change to the valid values for any cell or sets the value of a 

cell, then we repeat the strategies starting from elimination.

 If the strategy makes no change, then we move on to the next strategy.

 Elimination and lone ranger can be applied more often since those are the 

strategies most likely to make changes to the sudoku puzzle.

 If we find the value of a cell, then we remove that value from the list of possible 

values of the cells in the same row, column, and box.



PROPOSED ALGORITHM

 Parallelizing by box for each strategy.

 First, elimination is run in parallel across all boxes. Once its done, then lone 

rangers will run in parallel across all boxes, and so on.

 We assign only specific boxes to check the rows and the columns for the 

strategies so we don't do duplicate work. For example, we don't want two boxes 

in the same rows to check for elimination in the same three rows.

 We also choose the boxes in such a way that we don't have one box doing extra 

work by checking both columns and rows



PROPOSED ALGORITHM

 The red boxes check the rows and 
the green boxes check the 
columns.

 If the humanistic algorithm returns 
a board with unfilled cells left, then 
we pass it to the brute force.

 Otherwise, we return the solution.



PROPOSED ALGORITHM

 Brute force algorithm uses depth first search approach.

 First, we fill in the first empty cell with the smallest valid number.

 Then, we try to fill in the next empty cell in the same way. If we reach an empty 

cell that does not have any valid numbers, we backtrack to the most recently 

filled cell and increment its number by 1. If the number cannot be incremented, 

then we backtrack again.

 We continue doing this until either there are no more empty cells on the board. 

This means we found the solution and we return it. Or we backtracked to the first 

unfilled cell. In this case, no solution exists for the board.



PROPOSED ALGORITHM

 We then combine our serial brute force algorithm with shared stack.

 We create a board for all permutations of valid numbers of the first 7 cells and fill 

in those 7 cells with the permutations. We then push all those boards onto the 

stack.

 Next, multiple threads pop from the stack in parallel and try to find a solution 

using brute force. If a partial board popped from the stack isn’t the solution, the 

board is discarded and the thread pops another one off the stack. The first 

thread to find a solution will abort all other threads.

 Finally, the main thread will return either the solution, or no solution if the stack 

is empty.



IMPROVIZATIONS

 Workload sizes for each thread were too small since we were finding valid numbers for 

only one cell, which is not an intensive nor time-consuming task. Each thread ended up 

finishing quickly and was waiting to gain access to the stack.

 Instead of only filling in the first empty cell, we fill in the first 7 empty cells. We push all 

possibilities of the first 7 being filled to the stack. Then threads pop the copies from the 

stack in parallel.

 Chose to fill in 7 cells because, it was found to give a good execution time in comparison 

to other numbers of cells.

 Increased the workload size for each thread, which helped in lowering the contention on 

the stack.



RACE CONDITION

 Added a lock because the algorithm ran into the following race condition:



LOCK OPERATION

 LOCK is an operation that freezes 
the entire row, column and mini-
grid, so that no other core could 
lock any cell within the same area. 
This area is the conflict boundary of 
a cell.

 The shaded area represents the 
locked region which is the conflict 
boundary required to be locked in 
order to update cell C(2,3).



LOCK OPERATION

 If a core is unable to place a lock, due to a lock that had already been placed by a 
different core on another cell on the same conflict boundary, then the core 
chooses a different work item to process.

 This process reduces the idle time for a core, since it eliminates the need for 
waiting until the other core releases its lock on the conflict boundary, hence 
maximizing the overall efficiency of the algorithm.

 In this way, all the cells are filled with the values without running into race 
conditions.



INPUT

 Input: N, the dimension of the board. 
Then board itself is passed as input.

 The boards are represented as a 2-D NxN 
array of integers where the 0’s represent 
the empty squares.



BRUTE FORCE ALGORITHM-EXECUTION TIME



HUMANISTIC and BRUTE FORCE ALGORITHM-
EXECUTION TIME



CONCLUSION

 The humanistic approach doesn’t guarantee a solution but it achieves a much 
better overall time.

 The brute force approach parallelizes well and guarantees to find a solution if 
one exists but it has a slow overall time.

 By combining both, we have a solver that is guaranteed to find a solution in a 
very short amount of time.



REFERENCES

 http://alitarhini.wordpress.com/2011/04/06/parallel-depth-first-sudoku-solver-
algorithm/?relatedposts_exclude=372

 http://alitarhini.wordpress.com/2012/02/27/parallel-sudoku-solver-algorithm/

 http://en.wikipedia.org/wiki/Sudoku_solving_algorithms#Brute-force_algorithm

 http://www.andrew.cmu.edu/user/hmhuang/project_template/finalreport.html

 Miller, Russ and Laurence Boxer. Algorithms Sequential and Parallel: A Unified 
Approach. Hingham, MA: Charles River Media, 2005. Print.

http://alitarhini.wordpress.com/2011/04/06/parallel-depth-first-sudoku-solver-algorithm/?relatedposts_exclude=372
http://alitarhini.wordpress.com/2012/02/27/parallel-sudoku-solver-algorithm/
http://en.wikipedia.org/wiki/Sudoku_solving_algorithms#Brute-force_algorithm
http://www.andrew.cmu.edu/user/hmhuang/project_template/finalreport.html

