
Saurabh Wanivadekar

2D HEAT 
EQUATION 
SOLVER USING 
MPI



2

Partial Differential Equations
The heat equation is a PDE, an equation that relates the partial 
derivatives of the involved terms.

The 2D Heat Equation can be stated as:

𝜕𝑢
𝜕𝑡 = 𝛼

𝜕!𝑢
𝜕𝑥! +

𝜕!𝑢
𝜕𝑦!

Diffusion of heat in a 
flat plane of material.
Redder is hotter.



3

Why are PDEs huge?
• Partial Differential Equations are great analytical models of the 

real world.

• One example is modelling the flow of wind in aerodynamic 
studies of Formula 1 cars.

• Another example is minimal surfaces.

1 + 𝑢"! 𝑢## − 2𝑢"𝑢#𝑢"# + 1 + 𝑢#! 𝑢"" = 0

https://youtu.be/_t-3lCZXlPM


4

Finding the Formula
• Solving the PDEs give you the underlying 

function that determines the exact 
relationship between the variables.

• There are multiple solvers of varying 
complexity and detail from Finite Difference 
Methods, Finite Element Methods, to Finite 
Volume Methods.

• To solve the 2D heat equation, we will use 
three methods: Jacobi, Gauss-Seidel and 
SOR methods and calculate the time it takes 
to reach L2 convergence.



5

Formula #1: Jacobi Method
• 𝑣$,&'() = )

*
𝑣$(),&' + 𝑣$+),&' + 𝑣$,&()' + 𝑣$,&+)' − ,!

*
𝑓$&

• The iterative method calculates the new value for each point by 
taking the average of its neighbors.

• 𝑓$& is zero since there is no internal source of heat that is being 
simulated.



6

Formula #2: Gauss-Seidel
• 𝑣$,&'() = )

*
𝑣$(),&' + 𝑣$+),&'() + 𝑣$,&()' + 𝑣$,&+)'() − ,!

*
𝑓$&

• This method is the same as Jacobi, with the exception that the 
neighbors are divided into reds and blacks where, reds have 
𝑚 + 𝑙 odd and blacks have 𝑚 + 𝑙 even.

• The reds are calculated first, and the blacks are calculated using 
the values of the reds.



7

Formula #3: SOR
• 𝑣$,&'() = 1 − 𝑤 𝑣$,&' + -

*
𝑣$(),&' + 𝑣$+),&'() + 𝑣$,&()' + 𝑣$,&+)'() −

-,!

*
𝑓$&

• The SOR method also uses the concept of reds and blacks.

• The value of 𝑤 is kept at 1.5



8

Results
• The matrix is divided row wise to each node.

• The results are the measure of time taken to reach 
convergence, i.e., 𝑣'() ≅ 𝑣'

• The first two results are for a fixed size of matrix run on 
increasing number of nodes to study speedup.

• The next two results are for a fixed number of rows per node to 
determine scalability.



9

Height=4096
Nodes Jacobi G-S SOR
1 279.668 318.614 315.375
2 140.816 162.556 157.668
4 70.443 81.614 78.940
8 37.184 41.901 39.607
16 18.549 20.811 20.294
32 9.374 10.317 10.270
48 6.902 10.266 7.936
64 4.900 5.354 5.242 0

50

100

150

200

250

300

350

1 2 4 8 16 32 48 64

4096 Rows

Jacobi G-S SOR



10

Height=8192

0

100

200

300

400

500

600

700

1 2 4 8 16 32 48 64

8192 Rows

Jacobi G-S SOR

Nodes Jacobi G-S SOR
1 583.576 638.850 628.930
2 292.181 320.893 315.263
4 147.555 162.261 157.940
8 74.685 80.854 79.753
16 37.230 41.547 42.325
32 18.917 20.428 20.914
48 13.901 15.803 16.729
64 9.593 10.842 14.529



11

Rows/Node=1024
Nodes Jacobi G-S SOR
1 69.917 81.017 78.628
2 70.472 80.311 78.880
4 73.259 80.907 79.134
8 73.192 82.090 80.766
16 73.576 84.142 83.402
32 74.093 84.001 81.260
48 76.027 94.865 80.375
64 74.787 83.500 93.455 0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 48 64

R/N=1024

Jacobi G-S SOR



12

Rows/Node=2048
Nodes Jacobi G-S SOR
1 139.738 166.376 157.176
2 147.147 160.004 157.742
4 146.148 164.240 158.072
8 146.533 161.113 159.714
16 147.303 189.807 194.131
32 150.163 168.207 166.197
48 147.483 169.836 161.968
64 150.216 169.770 246.193 0

50

100

150

200

250

300

1 2 4 8 16 32 48 64

R/N=2048

Jacobi G-S SOR


