# 2D HEAT EQUATION SOLVER USING MPI 

Saurabh Wanivadekar



## Partial Differential Equations

The heat equation is a PDE, an equation that relates the partial derivatives of the involved terms.

The 2D Heat Equation can be stated as:

$$
\frac{\partial u}{\partial t}=\alpha\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$



Diffusion of heat in a flat plane of material. Redder is hotter.


## University at Buffalo The State University of New York

## Why are PDEs huge?

- Partial Differential Equations are great analytical models of the real world.
- One example is modelling the flow of wind in aerodynamic studies of Formula 1 cars.
- Another example is minimal surfaces.

$$
\left(1+u_{x}^{2}\right) u_{y y}-2 u_{x} u_{y} u_{x y}+\left(1+u_{y}^{2}\right) u_{x x}=0
$$

## Finding the Formula

- Solving the PDEs give you the underlying function that determines the exact relationship between the variables.
- There are multiple solvers of varying complexity and detail from Finite Difference Methods, Finite Element Methods, to Finite Volume Methods.
- To solve the 2D heat equation, we will use three methods: Jacobi, Gauss-Seidel and SOR methods and calculate the time it takes to reach L2 convergence.

```
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
T_SRC0 @ X - (W/2,H)
*
*********X*******
***............*
***............*
***............*
**.............*
**............** 0.0 @ all bdy by "X" (W/2,H)
**.............*
***.............*
***............*
***.............*
***..............*
* ****************
* 2D domain - WIDTH x HEIGHT
* "X" = T_SRC0
* "*" = 0.0
* "." = internal node suceptible to heating
* *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```


## Formula \#1: Jacobi Method

- $v_{m, l}^{n+1}=\frac{1}{4}\left(v_{m+1, l}^{n}+v_{m-1, l}^{n}+v_{m, l+1}^{n}+v_{m, l-1}^{n}\right)-\frac{h^{2}}{4} f_{m l}$
- The iterative method calculates the new value for each point by taking the average of its neighbors.
- $f_{m l}$ is zero since there is no internal source of heat that is being simulated.


## University at Buffalo The State University of New York

## Formula \#2: Gauss-Seidel

- $v_{m, l}^{n+1}=\frac{1}{4}\left(v_{m+1, l}^{n}+v_{m-1, l}^{n+1}+v_{m, l+1}^{n}+v_{m, l-1}^{n+1}\right)-\frac{h^{2}}{4} f_{m l}$
- This method is the same as Jacobi, with the exception that the neighbors are divided into reds and blacks where, reds have $m+l$ odd and blacks have $m+l$ even.
- The reds are calculated first, and the blacks are calculated using the values of the reds.


## University at Buffalo The State University of New York

## Formula \#3: SOR

- $v_{m, l}^{n+1}=(1-w) v_{m, l}^{n}+\frac{w}{4}\left(v_{m+1, l}^{n}+v_{m-1, l}^{n+1}+v_{m, l+1}^{n}+v_{m, l-1}^{n+1}\right)-$ $\frac{w h^{2}}{4} f_{m l}$
- The SOR method also uses the concept of reds and blacks.
- The value of $w$ is kept at 1.5


## University at Buffalo The State University of New York

## Results

- The matrix is divided row wise to each node.
- The results are the measure of time taken to reach convergence, i.e., $v^{n+1} \cong v^{n}$
- The first two results are for a fixed size of matrix run on increasing number of nodes to study speedup.
- The next two results are for a fixed number of rows per node to determine scalability.


## University at Buffalo The State University of New York

## Height=4096

| Nodes | Jacobi | G-S | SOR |
| :--- | :--- | :--- | :--- |
| 1 | 279.668 | 318.614 | 315.375 |
| 2 | 140.816 | 162.556 | 157.668 |
| 4 | 70.443 | 81.614 | 78.940 |
| 8 | 37.184 | 41.901 | 39.607 |
| 16 | 18.549 | 20.811 | 20.294 |
| 32 | 9.374 | 10.317 | 10.270 |
| 48 | 6.902 | 10.266 | 7.936 |
| 64 | 4.900 | 5.354 | 5.242 |

## University at Buffalo The State University of New York

## Height=8192

| Nodes | Jacobi | G-S | SOR |
| :--- | :--- | :--- | :--- |
| 1 | 583.576 | 638.850 | 628.930 |
| 2 | 292.181 | 320.893 | 315.263 |
| 4 | 147.555 | 162.261 | 157.940 |
| 8 | 74.685 | 80.854 | 79.753 |
| 16 | 37.230 | 41.547 | 42.325 |
| 32 | 18.917 | 20.428 | 20.914 |
| 48 | 13.901 | 15.803 | 16.729 |
| 64 | 9.593 | 10.842 | 14.529 |



## University at Buffalo The State University of New York

## Rows/Node=1024

| Nodes | Jacobi | G-S | SOR |
| :--- | :--- | :--- | :--- |
| 1 | 69.917 | 81.017 | 78.628 |
| 2 | 70.472 | 80.311 | 78.880 |
| 4 | 73.259 | 80.907 | 79.134 |
| 8 | 73.192 | 82.090 | 80.766 |
| 16 | 73.576 | 84.142 | 83.402 |
| 32 | 74.093 | 84.001 | 81.260 |
| 48 | 76.027 | 94.865 | 80.375 |
| 64 | 74.787 | 83.500 | 93.455 |

## University at Buffalo The State University of New York

## Rows/Node=2048

| Nodes | Jacobi | G-S | SOR |
| :--- | :--- | :--- | :--- |
| 1 | 139.738 | 166.376 | 157.176 |
| 2 | 147.147 | 160.004 | 157.742 |
| 4 | 146.148 | 164.240 | 158.072 |
| 8 | 146.533 | 161.113 | 159.714 |
| 16 | 147.303 | 189.807 | 194.131 |
| 32 | 150.163 | 168.207 | 166.197 |
| 48 | 147.483 | 169.836 | 161.968 |
| 64 | 150.216 | 169.770 | 246.193 |



