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Partial Differential Equations

The heat equation is a PDE, an equation that relates the partial
derivatives of the involved terms.

The 2D Heat Equation can be stated as:
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Diffusion of heat in a
flat plane of material.
Redder is hotter.



% University at Buffalo The State University of New York

Why are PDEs huge?

* Partial Differential Equations are great analytical models of the
real world.

* One example is modelling the flow of wind in aerodynamic
studies of Formula 1 cars.

* Another example is minimal surfaces.

(14 ud)uyy — 2uyuytlyey + (1 4+ ud)uy, =0


https://youtu.be/_t-3lCZXlPM
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Finding the Formula

Solving the PDEs give you the underlying
function that determines the exact
relationship between the variables.

There are multiple solvers of varying
complexity and detail from Finite Difference
Methods, Finite Element Methods, to Finite
Volume Methods.

To solve the 2D heat equation, we will use
three methods: Jacobi, Gauss-Seidel and
SOR methods and calculate the time it takes
to reach L2 convergence.
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Formula #1: Jacobi Method

2
n+1 _ 1/ n n n n h
y vm,l 4 (vm+1,l + vm—l,l + vm,l+1 + vm,l—l) o 4 fml

* The iterative method calculates the new value for each point by
taking the average of its neighbors.
* fmn IS zero since there is no internal source of heat that is being

simulated.
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Formula #2: Gauss-Seidel

n+1 _ 1/ n n+1 n n+1 h=
y vm,l 4 (vm+1,l + vm—l,l + vm,l+1 + vm,l—l o 4 fml

* This method is the same as Jacobi, with the exception that the
neighbors are divided into reds and blacks where, reds have
m + [ odd and blacks have m + [ even.

* The reds are calculated first, and the blacks are calculated using
the values of the reds.
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Formula #3: SOR

n+l _ n Wi(.,n n+1 n n+1 Y _
y Umi = (1 - W)vm,l + 4 (vm+1,l + Um-1.1 + Um,i+1 + Umi-1
wh?
4 fml

* The SOR method also uses the concept of reds and blacks.

* The value of w is kept at 1.5
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Results

* The matrix is divided row wise to each node.

* The results are the measure of time taken to reach

convergence, i.e., vt = pm

* The first two results are for a fixed size of matrix run on
increasing number of nodes to study speedup.

* The next two results are for a fixed number of rows per node to

determine scalability.
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Height=4096
Noes | Jacobi |G- |SOR
1 279.668 318.614

2 140.816 162.556

4 70.443 81.614

8 37.184  41.901

16 18.549  20.811

32 9.374 10.317

48 6.902 10.266

64 4.900 5.354
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Height=8192
Nodes | Jacobi |G-S__|SOR
1 583.576 638.850

2 292.181 320.893

4 147.555 162.261

8 74.685 80.854

16 37.230 41.547

32 18.917 20.428

48 13.901 15.803

64 9.593 10.842
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Rows/Node=1024

Nodes | Jacobi |G-S__|SOR
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Rows/Node=2048

Nodes | Jacobi |G-S__|SOR _
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