COMPUTING OVERLAPPING
LINE SEGMENTS

- A parallel approach by Vinoth Selvaraju

MOTIVATION

S Beeds N, st it

* There are 2 main reasons to parallelize the code
* solve a bigger problem
* reach solution faster

| tried to parallelize a simple problem in computation

seometry to achieve a faster solution

PROBLEM STATEMENT

-or a given set of 'n’”’ ordered line segments along

the same line (x-axis),

-Ind whether or not the x-axis 1s completely covered

oy the set of n line segments between two given x-
coordinates.

SEQUENTIAL SOLUTION

* Input consists of an array with 2n entries and end points of the X-axis
coverage (A & B)

* Scan through the array, for each of the points between A & B, create an
operand field that Is set to | If that represents the left end point and Is set to
-| If that represents the right end point

» Once again scan through the array, for all the 2n points, compute the parallel
prefix sum

» Final scan to find the break point

* Running time - Theta(n)

PARALLEL APPROACH

On CCR Cluster

More than | record is distributed across number of nodes taken into processing

* Broadcast the values A & B to first and last node respectively

* OR semigroup operation to compute the desired comparison for A and B and a broadcast of the halting condition
» Each node performs a local parallel prefix operation at the same time

* Globally, parallel prefix is computed over total number of nodes and final prefix values stored one per node
 Broadcast the results within each of the nodes, the final prefix value determined by the previous processor

* A semigroup operation can be performed to find the first break point i.e. value of O corresponds to break point

* Running time - Depends upon the number of data distributed per processor and total number of processor taken
for computing. Running time will be dominated by the local parallel prefix compute or the global parallel prefix
compute whichever is larger

SAMPLE SIZE

* Input size has been varied from [000 to 512

million line segment points and nodes has been
varied from | to 256

TEST RESULT ANALYSIS

Approach:

» The whole idea of this project Is to find the running time of the algorithm in
Parallel architecture and compare against the Sequential version.

» Running time has been studied by varying no. of nodes, input size, number of

data per nodes etc.

» Each test was carried out 10 times and Tmin, Tmax & Tavg has been
computed. Tavg has been used in analysis of the running time.

* The number of processor varied from | to 256 and the number of data has
been varied from 1000 to 512 Million

RUNNING TIMEVS NO. OF
RO CESSUNS

R Pl - | 28171 O 256 O 2

| P S | 6P 64P 2560

CLUSTER - SPEED UP

oM SRR | 28M
o= 7]

5

ER75

pie

| 5

0
| P A | 6P Ol 256P

PARALLEL EFFICIENCY

® P @ 6P @ 64P @ 256P

Parallel Efficiency (%)

Parallel efficiency I1s found to be more in the case of 4 Processor!

COST ANALYSIS

400

300

200

|00

| o RSSO 64 sl oG] . Ayl
Cost Is very less when working with single processor! 1.e. RAM implementation is

efficient for this case!

CHOOSING THE BEST

B 4P B Best case

50

SeS)

25

| 2.5

Tavg (s) Speedup Efficiency(%) Cost

Choosing 4 Processors seems to be a better solution for computing line segment problem considering a balance between

running time, speedup, parallel efficiency & cost.

CONCLUSIONS

* Having more data per p

rocessor has 1it's own limitations.

The more the data, communication time dominates the

computation time as the processors communicate among

each other during computation of parallel prefix operation

olobally. I'his case Is very

» Computing line segmen
Processors for a particu

evident In case of 256 processors.

. problem s efficient In case of 4
ar set of data considering running

time, speedup, parallel efficiency & cost.

CHALLENGES FACED

» Parallel code Is pretty tough to debug! | have been

oetting lot's of segmentation faults during coding

* Preparing data for this project was a difficult one. |
wrote a separate code to write data to a file on

disk and used that file as the input to the main
code

U TURE WORK

* [ry to use more varieties of test data and run

rigorous number of tests (more than 50) to obtain
a fair running time of the program

* Implementation of same algorithm using OpenMP

REFERENCE

» Miller, Russ and Laurence Boxer. Algorithms
Sequential and Parallel: A Unified Approach, Third
Edition

» (Class slides by Dr. M. D. Jones, Ph.D.

» http://mpitutorial.com/beginner-mpi-tutorial/

http://mpitutorial.com/beginner-mpi-tutorial/

THANKYOU

