## SIEVE PARALLEL ALGORITHM

CSE633 - Shivangi Mishra


## University at Buffalo The State University of New York

## cONTENT

1. Intro to Prime Number
2. Sequential Sieve Background
3. Parallel Sieve Implementation
4. Results and Observations
5. Goals


## Sequential Algorithm

```
def FindPrime(n):
    prime = [True for i in range(n+1)]
    for i in range(2,n+1):
    for j in range(2,i):
        if i%j==0:
            prime[i]=False
            break
    prime[i] = True
```

Time complexity: $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
$>$ The prime number is a positive integer greater than 1 that has exactly two factors, 1 and the number itself.
First few prime numbers are $2,3,5,7,11,13,17,19,23$
$\Rightarrow$ Except for 2, which is the smallest prime number and the only even prime number, all prime numbers are odd numbers.
$>$ Every prime number can be represented in form of $\mathbf{6 n + 1}$ or $\mathbf{6 n - 1}$ except the prime numbers $\mathbf{2}$ and $\mathbf{3}$, where n is any natural number.

- The Sieve of Eratosthenes is a method used to find prime numbers.
- Prime numbers are important in modern encryption algorithms like sha256 that keep our digital transactions safe.


## Sieve of Eratosthenes

- Public-key cryptography also uses prime numbers to create specialized keys.
- The Sieve is also used in mathematics, abstract algebra, and elementary geometry to study shapes that reflect prime numbers.
- Biologists use the Sieve to model population growth, and composers use prime numbers to create metrical music.
- Olivier Messiaen, a French composer, used prime numbers to create unique rhythms in his music pieces.


## Sieve Simulation



## Sequential Sieve Algorithm

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 8 | - | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 | 17 | 18 |
| 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 |

find primes up to $\mathbb{N}$<br>For all numbers a : from 2 to sqrt(n)<br>IF a is unmarked $\mathbb{T H E N}$ a is prime For all multiples of a $(a<n)$ mark multiples of as composite<br>All unmarked nummbers are prime!

Pseudo code

Time complexity: $\mathrm{O}\left(\mathrm{n}^{*} \log (\log (\mathrm{n}))\right)$

## Parallel Sieve Implementation

$>$ Split the array of length $n$ between processors $p$ each of size $n / p$ if extra element is there, adjust in the last processor.
> Mark all even numbers as non-prime in each processor in parallel.
$>$ Broadcast the minimum prime number in process 0 to other processes.
> Cancel out the multiples in process 0 and the other processes in parallel.
$\Rightarrow$ After the primes are found in each process combine the result recursively.

## Broadcasting at terminal nodes

- Process 0 will send all the primes till sqrt(n) to all processes
- Other processes will receive the prime and cancel the multiples in their range.
- Process 0 will also cancel the multiples.

```
f(processId == 0)
    MPI_Request send_request;
    // long int bdcast_next_prim
    long int prime = -1;
    * If the number is unmarked *
    if (marked2[c - low] == 1&c != 2)
    { prime = c;
        Mrime = c; 
        if (j % prime == 0)
            Marintf(" div %ld\n",-prime);
            marked2[j - low] = 0;
                %d, low= %ld, prime= %ld\n", j, low, prime);
        }
    }
    for (int i = 1; i < noofProcesses; i++)
        // printf(" Broadcasting markes=&ld prime=%ld\n", marked2[c - low], prime);
        // printf("%ld %ld,", marked2 [c-low],c);
        int tag = (int)c;
        // MPI_Isend(&prime, 1, MPI_LONG, i, tag, MPI_COMM_WORLD, &send_request);
        MPI_Send(&prime, 1, MPI_LONG, i, tag, MPI_COMM_WORLD);
            // printf(" lol %ld\n", next_prime);
```



While (counter $<=$ sqrtw)

Int iffesolvec;
MPI_Status recv_stat
MpI_Status reci_status;
long int next_prine $=-1 ;$




$1 /$ sisep (1);
Stop
dof
// dot ${ }_{\text {MpI }}$
MpI_Test(srecc_-request, siifeseoved, srecc__status) ;
While(IIfResolved);

if (next_-srine $1=-1$ )


/* If the numer is unnark
if ( $c$ \& next_prime $=0$ )

if (next_prine $=3 \& \mathrm{c} *$ next_prine $=0$ )
// printt(" debug \&ld, $c=\{l d$, rank=sd marked=\{ld, \n", next_prime, $c$, processid, marked2 [c - lowl);

## Initial failed attempt for Broadcasting

- Process 0 will send all the primes till sqrt(n) to all processes using MPI_Isend
- Other processes will receive the prime using MPI_Irecv and cancel the multiples in their range.
- The receive buffer is is getting resolved at different times in each processor causing faulty results.



## Parallel Stitch Step



## Result parallel

1 core per Node

| Processors | Time in sec |
| :--- | :--- |
| 2 | 733.451 |
| 4 | 445.246 |
| 8 | 285.531 |
| 16 | 129.095 |
| 32 | 107.378 |
| 64 | 165.498 |
| 128 | 385.445 |

## IB Vs TCP|IP Network

## 1 core per Node

| Processors | IB(Time in sec) | TCPIIP (Time in sec) |
| :--- | :--- | :--- |
| 2 | 54.011 | 66.297 |
| 4 | 38.485 | 72.850 |
| 8 | 36.957 | 61.447 |
| 16 | 26.384 | 104.279 |
| 32 | 23.527 | 127.930 |
| 64 | 33.528 | 197.186 |
| 128 | 49.977 | 329.153 |

IB vs TCP for Input size 10**5


## Speed-Up

1 core per Node Input size $=10^{\wedge} 8$

$$
\text { Speedup }=\frac{T_{\text {Seq }}}{T_{\text {parallel }}} \quad T_{\text {Seq }}=1412.8
$$

| Processors | Speedup |
| :--- | :--- |
| 1 | 1 |
| 2 | 1.926 |
| 4 | 3.173 |
| 8 | 4.948 |
| 16 | 10.944 |
| 32 | 13.157 |
| 64 | 8.537 |
| 128 | 3.66 |

Speedup for $10 \wedge 8$


## Scaled Result(Gustafson's law)

$$
1 \text { core per node }
$$

| Processors | Time in sec | Input size |
| :--- | :--- | :--- |
| 1 | 1376.044 | $10^{\wedge} 4$ |
| 2 | 750.429 | $2^{\star} 10^{\wedge} 4$ |
| 4 | 401.852 | $4^{\star 1} 10^{\wedge} 4$ |
| 8 | 222.785 | $8^{\star 1} 10^{\wedge} 4$ |
| 16 | 128.394 | $16^{\star 1} 10^{\wedge} 4$ |
| 32 | 133.172 | $16^{\star 1} 10^{\wedge} 4$ |
| 64 | 190.983 | $64^{\star 1} 10^{\wedge} 4$ |
| 128 | 396.292 | $128^{\star} 10^{\wedge} 4$ |



## Efficiency

1 core per Node Input size $10^{\wedge} 8$

$$
\text { Efficiency }=\frac{T_{\text {seq }}}{\operatorname{cost}} \quad T_{\text {seq }}=1412.869 \mathrm{sec}
$$

| PE | Time in <br> sec | Cost | Efficiency |
| :--- | :--- | :--- | :--- |
| 2 | 733.451 | 1466.9 | 0.96 |
| 4 | 445.246 | 1780.98 | 0.79 |
| 8 | 285.531 | 2284.24 | 0.61 |
| 16 | 129.095 | 2065.44 | 0.68 |
| 32 | 107.378 | 3436.09 | 0.41 |
| 64 | 165.498 | 10591.87 | 0.13 |
| 128 | 385.445 | 49336.96 | 0.02 |

## References

- AMCS Slides By Prof. Russ Miller
- GFG
- https://mpitutorial.com/tutorials


## Thank You Questions?

