
Parallel Sudoku Solver using MPI
and C

Name: Rohit H. Shreekant CSE 633

Ubit Name: rohithol Instructor : Prof. Russ Miller

UB # 5009 7252 Monday, May 5th, 2014

What is Sudoku!

• Logic puzzle

• Given a grid: player can deduce all the remaining symbols

• Rules : Must have 9 unique symbols (1 to 9)
1. Each Row
2. Each Column
3. Each 3x3 Block
4. All Numbers from 1 – 9
5. Fill in all the blank spots

Standard Sudoku Grid : 9 X 9

Solving a Sudoku

• Two Recursive Steps

1. Constraint Propagation

• Reduce the amount of possibilities for each cell to 1 number!

2. Search

• A cell is chosen to assume one of its possible values, then Constraint
Propagation is repeated.

Constraint Propagation

• Rule 1
a. For any cell, if a number already exists in its row, column or box (the cell’s

peers), the possibility of that number for that cell is removed.

Constraint Propagation

• Rule 2
a. For any cell, if all of its peers has a specific number removed, the cell itself

must contain that number.

Search

• A Single cell is chosen to assume one of its possible values.

• Contraint_prop()

• If (assumption is TRUE) -> eventually arrive at the solution.

• If (assumption is FALSE) or we reach a contradiction -> Initial
assumption was wrong.

• Remove that assumption from the possibilities list.

Recursive Calls

• CP() -> Search() -> CP() -> Search() …

Parallel Solution
• Parallelizing Constraint Propagation

Approach

• 1 Master + n worker nodes

• Master inputs a number based on constraints.

• Distributes the grid amongst the workers.

• Workers perform constraint_propagation()

• Masters gathers all the data.

• Repeat till all entries have been made.

Important :

• Please note – chosen inter process communication over efficiency

• Dell – 2.40 Gz Intel Xeon E5645 (Batch System)
• 372 Total Nodes
• 12 Cores each
• Main Memory : 48 GB

• 1 Core / Node

• Why?
• MPI handles send recv automatically.
• Cores on the same node use quickest communication medium = shared memory.
• For Uniformity.

Experiment 1

• Keeping Data Constant and Increasing the Number of Nodes
(Processors)

• Data = 50 Easy Sudoku + 90 Hard Sudoku

• Easy = Given ~ (25 to 30)

• Difficult = Given ~ (19 to 25)

• 4 Rounds
1. Serial
2. 3x3 cell - > Each Node
3. Arr[3] -> Each Node
4. Arr[1] -> Each Node

1 Node 9 Nodes (1 core each) 27 Nodes (1 core each) 81 Nodes (1 core each)

Series3 0.5 0.39 0.8 1.15

0.5

0.39

0.8

1.15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Number of Processors (1 Core / Node)

50 Easy - 9 x 9 Sudoku

1 Node 9 Nodes (1 core each) 27 Nodes (1 core each) 81 Nodes (1 core each)

Series3 3.8 2.622 4.56 10.26

3.8

2.622

4.56

10.26

0

2

4

6

8

10

12

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Number of Processors (1 Core / Node)

90 Hard – 9 x 9 Sudoku

Experiment 2 – Speed Up

• Initially Idea – Run many 25 x 25 Sudoku boards

• Problems with 25 x 25 – Take too long!

• A 9 x 9 is solved really fast

• Best size for analysis – 16 x 16 hard

• Hard -> 104 – 115 cells are filled (16 * 16 = 256)

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Execution Time 74.6749 37.5634 16.2995 7.4974 9.6228

74.6749

37.5634

16.2995

7.4974
9.6228

0

10

20

30

40

50

60

70

80

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Number of Cores (1 Core / Node)

Execution Time – 16 x 16 Hard Sudoku Board

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Speedup 1 1.97 4.54 9.87 7.69

1

1.97

4.54

9.87

7.69

0

2

4

6

8

10

12
Ex

ec
u

ti
o

n
 T

im
e

(s
)

Number of Cores (1 Core/Node)

Speedup – 16 x 16 Hard Sudoku Board

Speedup

2 per. Mov.
Avg. (Speedup)

1 Node 2 Nodes 4 Nodes 8 Nodes 16 Nodes

Efficiency 1 0.985 1.135 1.23375 0.480625

1 0.985

1.135

1.23375

0.480625

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ef
fi

ci
en

cy

Number of Nodes (1 Core / Node)

Efficiency

Results & Observations :
• Super Linear Speedup

• Usually Linear Speed up
• Generally Noticeable in Open MPI – Cache Effect
• Occurred Due to my implementation – Broadcasting cell values after constraint

propagation.

• Efficiency > 1 ?
• Due to Super Linear Speedup

• Balance of Processors used and Data Distribution -> Best Efficiency

• Easy problems are solved too quickly (serially) -> Inaccurate Speedup
• Difficult to analyze.

Results & Observations:
• Modified Brute Force approach

• Good Speedup

• Poor Execution Time

• Hard Problems : ~7.5 s

• Expert Problems : exceeded 15 min quota

• Other implementation took over 6 hours.

• Parallel Programming is really hard! – Very Interesting at the same
Time!

References

• Parallelization of Sudoku – (University of Toronto)
http://individual.utoronto.ca/rafatrashid/Projects/2012/SudokuRepor
t.pdf

• Parallel Sudoku Solver – Carnegie Mellon University, Hilda Huang,
Lindsay Zhong

• Arbitrary Size Parallel Sudoku Creation – William Dudziak
http://www.dudziak.com/ArbitrarySizeSudokuCreation.pdf

• Solving Every Sudoku Puzzle – Peter Norvig

http://norvig.com/sudoku.html

http://individual.utoronto.ca/rafatrashid/Projects/2012/SudokuReport.pdf
http://www.dudziak.com/ArbitrarySizeSudokuCreation.pdf
http://norvig.com/sudoku.html

