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Problem Statement

= Single source shortest path.

= To find shortest path from a given vertex to all other
vertices in a weighted directed graph.

= To detect negative cycles in the graph
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Bellman Ford Algorithm

Computes shortest path from a source to all vertices in a weighted graph.

Capable of handling graphs with negative edge weights.

Dijkstra vs Bellman Ford.

Applications in routing.
How it works?

* Relaxes all edges |V-1| times to approximate distances, where |V| is the number of
vertices in a graph.

* Incase of negative cycle, distances are updated even after last iteration.
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Example
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Sequential Algorithm

function bellmanFord(G, S)
for each vertex V in G
distance[V] <- infinite
previous[V] <- NULL
distance[S] <- 0

for each vertex V in G
for each edge (U,V) in G . *
tempDistance <- distance[U] + edge weight(U, V) TIME COMPLEXITY ) O(V E)
1f tempDistance < distance[V]
distance[V] <- tempDistance
previous[V] <- U

for each edge (U,V) in G
If distance[U] + edge weight(U, V) < distance[V}
Error: Negative Cycle Exists

return distance[], previous[]
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Approaches to Parallelize it

COARSE GRAIN FINE GRAIN

* Each Processor is assigned a subset of * Each Processor maintains a list of vertices
edges in the beginning and assignment never ordered by the labels in the distance vector
changes. e During communication phase, each processor

e Iteratively performs computation and selects minimum element on its local distance

communication phases. vector and a vertex which has least distance

Is selected by all processors.

* Each processor relaxes its subset of edges

. * Edges from that vertex are relaxed by all
and updated local distances. J y

processors in its subgraph. Computation
* At the end of computation, distance vector phase is same in both approaches.

equal to the minimum of all labels is updated
in all processors. 8
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Pseudocode for coarse grained
Algorithm

o =11 o f1 is initially FALSE
f1 = FALSE
for each vertex u
do if d(u) > dpin(u)
then d(u) — dpin(u)
m(v) — oo
fs = TRUE
if outdegree(u) > 0
then mark u
for each vertex w in order
do 1f u is marked
then unmark «
for each edge (u, v)
do if d(v) < d(u) + w(u, v)
then d(v) — d(u) + w(u, v)
m(v) «— u
f1 = TRUE
if outdegree(v) > 0
then mark v
if f, = FALSE

then terminate o)
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To do

Run the algorithm on larger input «/

Implement couple of heuristics from research paper v/

Fine grained approach v/

Comparison of Course grained and Fine grained approach

Negative cycle detection /

10
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Implementation Results
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Sequential vs Parallel
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Speed up

+ 1000 vertices

B will= 5000 vertices
Speed Up = Tsequential / Tparallel == 10000 vertices
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Future Work

* Implementation using CUDA
* Fine grained approach on large number of nodes

* Increase input data up to 232 vertices

14
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Thank You
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