PARALLEL
IMPLEMENTATION OF
BELLMAN FORD ALGORITHM

CSE 633 — Parallel Algorithms
Instructor : Dr. Russ Miller

Presented by Shreya Reddy Gouru

-% University at Buffalo The state University of New York

% University at Buffalo The state University of New York

Outline

" Problem Statement

= Bellman Ford Algorithm

= Example

= Sequential Algorithm

= Approaches to Parallelize it

= Pseudo code for Course grained approach
" To do task status

=" |mplementation Results

= Future work

= References

tﬁ University at Buffalo The state University of New York

Problem Statement

= Single source shortest path.

= To find shortest path from a given vertex to all other
vertices in a weighted directed graph.

= To detect negative cycles in the graph

% University at Buffalo The state University of New York

Bellman Ford Algorithm

Computes shortest path from a source to all vertices in a weighted graph.

Capable of handling graphs with negative edge weights.

Dijkstra vs Bellman Ford.

Applications in routing.
How it works?

* Relaxes all edges |V-1| times to approximate distances, where |V| is the number of
vertices in a graph.

* Incase of negative cycle, distances are updated even after last iteration.

tﬁ University at Buffalo The state University of New York

Example

A B C D E A B C D E

0 O 0O 0O ©O

tﬁ University at Buffalo The state University of New York

Example

A B C D E

g
3
3
3

g 8 3

— o ek

tﬁ University at Buffalo The state University of New York

Sequential Algorithm

function bellmanFord(G, S)
for each vertex V in G
distance[V] <- infinite
previous[V] <- NULL
distance[S] <- 0

for each vertex V in G
for each edge (U,V) in G . *
tempDistance <- distance[U] + edge weight(U, V) TIME COMPLEXITY) O(V E)
1f tempDistance < distance[V]
distance[V] <- tempDistance
previous[V] <- U

for each edge (U,V) in G
If distance[U] + edge weight(U, V) < distance[V}
Error: Negative Cycle Exists

return distance[], previous[]

% University at Buffalo The state University of New York

Approaches to Parallelize it

COARSE GRAIN FINE GRAIN

* Each Processor is assigned a subset of * Each Processor maintains a list of vertices
edges in the beginning and assignment never ordered by the labels in the distance vector
changes. e During communication phase, each processor

e Iteratively performs computation and selects minimum element on its local distance

communication phases. vector and a vertex which has least distance

Is selected by all processors.

* Each processor relaxes its subset of edges

. * Edges from that vertex are relaxed by all
and updated local distances. J y

processors in its subgraph. Computation
* At the end of computation, distance vector phase is same in both approaches.

equal to the minimum of all labels is updated
in all processors. 8

tﬁ University at Buffalo The state University of New York

Pseudocode for coarse grained
Algorithm

o =11 o f1 is initially FALSE
f1 = FALSE
for each vertex u
do if d(u) > dpin(u)
then d(u) — dpin(u)
m(v) — oo
fs = TRUE
if outdegree(u) > 0
then mark u
for each vertex w in order
do 1f u is marked
then unmark «
for each edge (u, v)
do if d(v) < d(u) + w(u, v)
then d(v) — d(u) + w(u, v)
m(v) «— u
f1 = TRUE
if outdegree(v) > 0
then mark v
if f, = FALSE

then terminate o)

tﬁ University at Buffalo The state University of New York

To do

Run the algorithm on larger input «/

Implement couple of heuristics from research paper v/

Fine grained approach v/

Comparison of Course grained and Fine grained approach

Negative cycle detection /

10

% University at Buffalo The state University of New York

Implementation Results
GRAPH : 1000 VERTICES GRAPH : 5000 VERTICES GRAPH : 10000 VERTICES

3 6000

3000 Course Grained

Fine Grained
5000

7000
6
- — 4000 n 6000
— \(]__J' t
£ 5 E <
= = =
2000 = 5000

4000
3 2000

3000
2 1000

20 40 60 20 100 120 20 40 60 80 100 120 20 40 60 80 100 120

Nodes Nodes Nodes

11

tﬁ University at Buffalo The state University of New York

Sequential vs Parallel

Sequential
Parallel
8000 -
6000
w
]
e 4000
=
2000
0
Tk 2k 3k 4k 5k Gk 7k 8k Ok 10k
Number of Vertices

12

% University at Buffalo The state University of New York

Speed up

+ 1000 vertices

B will= 5000 vertices
Speed Up = Tsequential / Tparallel == 10000 vertices

Speed up

/

20 40 60 80 100 120

Number of Nodes

13

tﬁ University at Buffalo The state University of New York

Future Work

* Implementation using CUDA
* Fine grained approach on large number of nodes

* Increase input data up to 232 vertices

14

% University at Buffalo The state University of New York

References

* Implementing Parallel Shortest-Paths Algorithms (1994) by Marios Papaefthymiou
and Joseph Rodrigue.

* Y. Tang, Y. Zhang, H. Chen, “A Parallel Shortest Path Algorithm Based on
GraphPartitioning and lterative Correcting”, in Proc. of IEEE HPCC’08, pp. 155-161,
2008.

* https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Muthuraman-Spring-2014-
CSE633.pdf.pdf

* Algorithms Sequential & Parallel: A Unified Approach by Russ Miller and Lawrence
Boxer

* https://mpitutorial.com/tutorials/
* https://www.programiz.com/dsa/bellman-ford-algorithm

* https://lwww.geeksforgeeks.org/bellman-ford-algorithm-dp-23/ 15

tﬁ University at Buffalo The state University of New York

Thank You

16

