UB SEAS course CSE 633: Parallel Computing

Parallel Union-Find using MPI

By Shubham Prasad Pednekar

Instructor: Dr. R. Miller

Problem Definition

The Union-Find Data Structure

Maintain a collection of sets supporting:

• union(u, v)

Combine sets containing \boldsymbol{u} and \boldsymbol{v}

 $S_{1} := \{1, 2, 3, 4, 5\}$ $S_{2} := \{6, 7, 8\}$ $union(1, 8) \Rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\}$

• find(v)

Return set containing v usually indexed by a unique representative of the set.

Representative element is usually the smallest element of the set

find(1) \Rightarrow representative_of(S₁) \Rightarrow 1

find(7) \Rightarrow representative_of(S₁) \Rightarrow 6

The Union-Find Forest (U)

- Union-Find usually uses the forest of directed trees data structure. It the following properties:
 - Every tree T_i in the forest represents the disjoint sets S_i in U.
 - The root of every tree in U is the representative of that group. root(T_i) = representative_of(S_i)
 - \circ All elements of set ${\rm S_i}$ are the key values of the nodes of tree ${\rm T_i}$

The forest of trees is represented as parent array and key array in memory.

Node Index	0	1	2	3	4
Value	1	2	3	4	5

Node Index	0	1	2	3	4
Parent	0	0	0	0	0

Find Operation

FIND is the operation of getting the representative of a connected component.

8

Union Operation

UNION is the operation of joining 2 components with an edge.

```
def union(roots:list, road:tuple) → None:
  location_a = road[0]
  location_b = road[1]
  root_a = find(roots, location_a)
  root_b = find(roots, location_b)
  roots[root_a] = min(root_a, root_b)
  roots[root_b] = min(root_a, root_b)
```


UNION Operation

```
def union(roots:list, road:tuple) → None:
  location_a = road[0]
  location_b = road[1]
  root_a = find(roots, location_a)
  root_b = find(roots, location_b)
  roots[root_a] = min(root_a, root_b)
  roots[root_b] = min(root_a, root_b)
```


location	5	6	8	7	9	10
root	5	5	6	5	7	7

Creating Connected Component for a Graph

by iterating over edges

for edge in edges: if not(edge[0] in values): add_value(edge[0]) if not(edge[1] in values): add_value(edge[1]) union(edge[0], edge[1])

Creating Connected Component for a Graph

by iterating over edges

```
def get_roots(N, M, roads, Q, queries) → list:
roots = [(None) for x in range(N)]
for road in roads:
   union(roots, road)
return roots
```


Parallel Approach

Parallel Algorithm for Union-Find Generation

- 1. **Distribute edges equally** over the nodes of a network.
- 2. Generate the partial forest for each processor using its edges.
- 3. Synchronize the partial forests over connected nodes of the network using **Connect Subgroup Operations**.
- 4. **Iterate** equal to communication diameter of the network.

Connect Subgroup Operation

- 1. Two processors exchange the vertex values. P_i gets V_i and P_i gets V_i
- 2. Both of them, check for vertex overlaps. P_i and P_i calculates $V_i \cap V_i$
- 3. Both of them, generate edges of (value, root[value]) for vertices in $V_i \cap V_i$
- 4. Both of them, exchange these new edges and representatives of sets.
- 5. Both of them, **add the new edges** to their own partial forest

At the end, both processors represent a single forest. (same root for same valued vertices in the partial forests).

The Choice of Network - Hypercube

Some hypercubes with their dimensions:

Iterations for n=16 hypercube

Iteration 1

Iterations for n=16 hypercube

Iteration 2

Iterations for n=16 hypercube

Iteration 3

Runtime VS Edge Count

Total Edges

Runtime VS Processor Count

262144 Total Edges = 262144

Runtime vs Processors

Speed Up & Efficiency Measurements for Constant Input Size

Processor Count	Runtime	Input (Edge Count)	SPEEDUP (for 2X processor count)	EFFICIENCY
2	199.9765223	262144	2*	1*
4	92.0984	262144	2.171335467	1.085667733
8	32.975811	262144	2.792907807	1.396453904
16	10.622648	262144	3.104292922	1.552146461
32	3.803315	262144	2.792997162	1.396498581
64	1.040988	262144	3.653562769	1.826781385
128	0.297374	262144	3.500601936	1.750300968

*Reference Measurement

SPEEDUP and EFFECIENCY

REL. SPEEDUP

SPEEDUP EFFECIENCY

PROCESSORS

Why is Efficiency >1 ?

Possible Reason:

- Underlying Serial Code not efficient.
 - It is evident by comparing different edge sizes for 2 processor setup, that the time roughly increases by a factor of 4 for 2X increase in input size.
 - The primary culprit seems to be the `for loops` used to perform set operations [O(V²) complexity] instead of a `hashmap` implementation [O(V) complexity].
 - That made sending messages [O(V) complexity] much more efficient than performing computation on the same processor.

Future Scope

• Integrate a HashMap based set operation library to make set operations O(V).

Questions?

References

Work-efficient parallel union-find

Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, Kun-Lung Wu (https://people.csail.mit.edu/jshun/6886-s19/lectures/lecture15-2.pdf)

Algorithms Sequential & Parallel: A Unified Approach 3rd Edition

by Russ Miller (Author), Laurence Boxer (Author)

MPI Tutorial

by Wes Kendall

SLURM reference guide

by UB CCR

THANK YOU