
Parallel Union-Find
using MPI

By Shubham Prasad Pednekar

Instructor: Dr. R. Miller

UB SEAS course CSE 633: Parallel Computing



Problem Definition



The Union-Find Data Structure

Maintain a collection of sets supporting: 

● union(u, v)

Combine sets containing u and v

● find(v)

Return set containing v usually 
indexed by a unique representative of 
the set.

Representative element is usually the 
smallest element of the set

S1 := {1, 2, 3, 4, 5}

S2 := {6, 7, 8}

union(1, 8) => {1, 2, 3, 4, 5, 6, 7, 8}

find(1) => representative_of(S1) => 1

find(7) => representative_of(S1) => 6



The Union-Find Forest (U)

● Union-Find usually uses the forest of 
directed trees data structure.It the 
following properties:

○ Every tree Ti in the forest represents the 
disjoint sets Si in U.

○ The root of every tree in U is the 
representative of that group.
root(Ti) = represenatative_of(Si)

○ All elements of set Si are the key values of 
the nodes of tree Ti

The forest of trees is represented as parent array and 
key array in memory.



FIND is the operation of getting the representative of a connected component.

Find Operation

def find(roots: list[int], location_x: int) -> int:

   if roots[location_x] == None:

       return location_x

   else:

       root = location_x

       while root != roots[root]:

           root = roots[root]

       return root

85

6

location 5 6 8

root 5 5 6



UNION is the operation of joining 2 components with an edge.

Union Operation

def union(roots:list, road:tuple) -> None:

   location_a = road[0]

   location_b = road[1]

   root_a = find(roots, location_a)

   root_b = find(roots, location_b)

   roots[root_a] = min(root_a, root_b)

   roots[root_b] = min(root_a, root_b)

85

6
10

9

7

location 5 6 8 7 9 10

root 5 5 6 7 7 7



UNION Operation

def union(roots:list, road:tuple) -> None:

   location_a = road[0]

   location_b = road[1]

   root_a = find(roots, location_a)

   root_b = find(roots, location_b)

   roots[root_a] = min(root_a, root_b)

   roots[root_b] = min(root_a, root_b)

85

6
10

9

7

location 5 6 8 7 9 10

root 5 5 6 5 7 7



Creating Connected Component for a Graph

for edge in edges:

if not(edge[0] in values):

    add_value(edge[0])

if not(edge[1] in values):

    add_value(edge[1])

union(edge[0], edge[1])

85

6

9

7

by iterating over edges



Creating Connected Component for a Graph

def get_roots(N, M, roads, Q, queries) -> list:

   roots = [(None) for x in range(N)]

   for road in roads:

       union(roots, road)

   return roots
1

3
2

8

10

5

6

9

7
4

by iterating over edges



Parallel Approach



Parallel Algorithm for Union-Find Generation

1. Distribute edges equally over the nodes of a network.

2. Generate the partial forest for each processor using its edges.

3. Synchronize the partial forests over connected nodes of the network using 
Connect Subgroup Operations.

4. Iterate equal to communication diameter of the network.



Connect Subgroup Operation

1. Two processors exchange the vertex values. Pi gets Vj and Pj gets Vi

2. Both of them, check for vertex overlaps. Pi and Pj calculates Vi ∩ Vj

3. Both of them, generate edges of (value, root[value]) for vertices in Vi ∩ Vj

4. Both of them, exchange these new edges and representatives of sets.
5. Both of them, add the new edges to their own partial forest

At the end, both processors represent a single forest. (same root for same valued 
vertices in the partial forests).



The Choice of Network - Hypercube

n=2 n=4 n=8 n=16

Some hypercubes with their dimensions:



Iterations for n=16 hypercube

Iteration 1



Iterations for n=16 hypercube

Iteration 2



Iterations for n=16 hypercube

Iteration 3



Runtime VS Edge Count



Runtime VS Processor Count



Processor 
Count

Runtime
Input

(Edge Count)
SPEEDUP

(for 2X processor count)
EFFICIENCY

2 199.9765223 262144 2* 1*

4 92.0984 262144 2.171335467 1.085667733

8 32.975811 262144 2.792907807 1.396453904

16 10.622648 262144 3.104292922 1.552146461

32 3.803315 262144 2.792997162 1.396498581

64 1.040988 262144 3.653562769 1.826781385

128 0.297374 262144 3.500601936 1.750300968

*Reference Measurement

Speed Up & Efficiency Measurements for Constant Input Size



Runtime VS Processor Count



Why is Efficiency >1  ?

Possible Reason:

● Underlying Serial Code not efficient.
■ It is evident by comparing different edge sizes for 2 processor setup, that the time roughly 

increases by a factor of 4 for 2X increase in input size.
■ The primary culprit seems to be the `for loops` used to perform set operations [O(V2) complexity] 

instead of a `hashmap` implementation [O(V) complexity].
■ That made sending messages [O(V) complexity] much more efficient than performing 

computation on the same processor.

Future Scope
● Integrate a HashMap based set operation library to make set operations O(V).



Questions?



References

Work-efficient parallel union-find 
Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, Kun-Lung Wu
(https://people.csail.mit.edu/jshun/6886-s19/lectures/lecture15-2.pdf)

Algorithms Sequential & Parallel: A Unified Approach 3rd Edition
by Russ Miller (Author), Laurence Boxer (Author)

MPI Tutorial
by Wes Kendall

SLURM reference guide
by UB CCR

https://people.csail.mit.edu/jshun/6886-s19/lectures/lecture15-2.pdf
https://www.amazon.com/Algorithms-Sequential-Parallel-Unified-Approach/dp/1133366805
https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&field-author=Russ+Miller&text=Russ+Miller&sort=relevancerank&search-alias=books
https://www.amazon.com/Laurence-Boxer/e/B008YGTSR8/ref=dp_byline_cont_book_2
https://mpitutorial.com/about/


THANK YOU


