PRIME FACTORIZATION

Shubham Ambavale
sambaval@buffalo.edu
GUIDED BY : Dr. Russ Miller
University at Buffalo The State University of New York

University at Buffalo The State University of New York

Background

- Prime factorization is the process of breaking down a composite number into its prime factors, which are the prime numbers that multiply together to equal the original number.
- Some of the applications are :
- Cryptography(RSA, Computer Security)
- Physics(Study properties of materials \& their electronic structures)
- Database Design(Unique Identifiers)
- Optimization Problems(Computationally Intensive)
- Cryptocurrency(Proof-Of-Work System)

5 University at Buffalo The State University of New York

Naive Sequential Algorithm

- Iterate through 2 to n
- Divide the number n until its evenly divisible.
- Evenly divisible number is one of the factor of the number n.

University at Buffalo The State University of New York

WORKING -

Sieve(n):

```
Input: an integer n}>1
```

Let A be an array of Boolean values, indexed by integers 2 to n,
initially all set to true.
for $i=2,3,4, \ldots$, not exceeding \sqrt{n} :
if $A[i]$ is true:
for $j=i^{2}, i^{2}+i, i^{2}+2 i, i^{2}+3 i, \ldots$ not exceeding n :
$A[j]$: $=$ false.
Output: all i such that $A[i]$ is true.
primes = Sieve(n)
for primeNumber in primeNumbers:
while n is divisible by primeNumber:
add primeNumber to the factor list divide n by primeNumber and update

NEED FOR PARALLELIZATION

- Improve Factorization Performance
- Faster Execution time
- Scaling for larger inputs

5 University at Buffalo The State University of New York

PARALLELIZATION STRATEGY

PARALLELIZATION STRATEGY

- Parallelize sieve to find prime factors
- Then, distribute the primes equally into number of processors except the last processor
- Machine processes only the subset of the primes and find factors from them

5 University at Buffalo The State University of New York

PARALLEL ALGORITHM

- Divide input range across all the processors
- Apply sieve by marking multiples of prime in the range
- On completion, broadcast prime number to other processors to eliminate non-primes
- Consolidate(MPI_Reduce)
- Distribute the primes equally across the processors
- $\mathrm{n}^{\text {th }}$ rank * chunksize $<=$ nth processor $<\mathrm{n}^{\text {th }}$ rank * chunksize + chunksize
- Find prime factors which evenly divide \mathbf{n} in the range
- Terminate

Improvements/Observations

- Parallelized Sieve of Eratosthenes(Previous Bottleneck) V
- Scaled up the number of nodes $\sqrt{ }$
- Increase in input size and increase in number of nodes/processors is directly proportional w.r.t performance
- Decrease in input size and increase in number of nodes/processors is inversely proportional w.r.t performance
- Implement Lowest Prime Factor for per processor optimization (LPF) X
- LPF[18] $=2$ => 18/2 = 9;
- LPF[9] $=3$ => 9/3 = 3;
$-\operatorname{LPF}[3]=3=>3 / 3=1$;

Results with equal distribution of prime factors

Processors	Time(in seconds)	
	1	
	2	
	4	
	8	779.814
	16	455.916
32	234.902	
64	91.448	

Processors		Time(in seconds)
	16	
	32	
	64	52.600724
128	26.33962	
256		13.821954
512	6.867855	
1024	3.586585	
2048		1.898545

Results with equal distribution of prime factors

Time vs Processors ($\mathrm{n}=12345678945$)

Results with exponential distribution of prime factors

Processors		Time(in seconds)
	1	
	2	1023.654
	4	800.814
8	480.655	
16	290.659	
32	150.598	
64	100.665	

Processors	Time(in seconds)
16	114.598
32	60.598
64	40.566
128	25.526
256	15.565
512	10.889
1024	5.233
2048	2.265

Results with exponential distribution of prime factors

Time vs Processors ($\mathrm{n}=12345678945$)

University at Buffalo The State University of New York

Variation for n

Time vs Processors ($\mathrm{n}=5689721545$)

5 University at Buffalo The State University of New York

Variation for n

Time vs Processors ($\mathrm{n}=562116359841$)

Time vs Processors ($\mathrm{n}=562116359841$)

5 University at Buffalo The State University of New York

Variation for n

Time vs Processors ($\mathrm{n}=8989454632$)

5 University at Buffalo The State University of New York

Variation for n

Time vs Processors ($\mathrm{n}=965612456285$)

Results for small n

Processors		Time(in seconds)
	1	
	2	
	4	913.254
8	739.414	
16	415.516	
32	194.501	
64	51.047	

Processors		Time(in seconds)
	16	
	32	
	48	
	64	29.565
128		25.111
256		20.569
	512	
1024		32.789
		45.598

5 University at Buffalo The State University of New York

Small n

Time vs Processors ($\mathrm{n}=800$)

Time vs Processors ($n=800$)

University at Buffalo The State University of New York

Small n

Time vs Processors ($\mathrm{n}=1500$)

Time vs Processors ($n=1500$)

5 University at Buffalo The State University of New York

REFERENCES

- https://crypto.stanford.edu/cs359c/17sp/projects/JacquelineSpeiser.pdf
- https://medium.com/coinmonks/integer-factorization-defining-the-limits-of-rsa-crackin g-71fc0675bc0e
- https://www.wccusd.net/cms/lib/CA01001466/Centricity/Domain/60/The\ Sieve\%2 0of\%20Eratosthenes.pdf

Thank You! Questions?

