
CONVEX-HULL 
PROBLEM

Snehal Jadhav
snehalja@buffalo.edu

50315111

(Using Quick Hull and K-means Algorithms)



Contents of this presentation:
• Convex Hull Overview

• Applications

• The Quick Hull Algorithm

• K-means Algorithm

• The combinatory parallel approach

• Observations

• Inferences

• Challenges

• Future Scope

• References.
2



What is a convex hull?
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The convex hull of a set of points is defined as the 
smallest convex polygon, that encloses all of the points in 
the set. 
Convex means that the polygon has no corner that is 
bent inwards.



Applications :

• Shape analysis : Shapes may be 
classified for the purposes of matching by 
their "convex deficiency trees", structures 
that depend for their computation on 
convex hulls. 

• Smallest box : Finding the smallest three-
dimensional box surrounding an object in 
space depends on the convex hull of the 
object.



Applications :

• Hand-gesture-recognition" domain : Convex hull works as an 
envelope around the hand.

- When the convex hull is drawn round the contour of 
the hand, it fits a set of contour points of the hand within 
the hull.

• Collision avoidance : Avoid collisions with other objects by 
defining the convex hull of the objects.

Fig. 1 Detected convex and 
defect points in the image



Quick Hull Algorithm
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1. Find the points with minimum and maximum x 
coordinates, as these will always be part of the 
convex hull. 

2. Use the line formed by the two points to divide 
the set in two subsets of points, which will be 
processed recursively.



Quick Hull Algorithm
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3. Determine the point, on one side of the line, 
with the maximum distance from the line. This 
point forms a triangle with those of the line.

4. The points lying inside of that triangle cannot be 
part of the convex hull and can therefore be 
ignored in the next steps.

5. Repeat the previous two steps on the two lines 
formed by the triangle(AC and BC) (except the 
initial line- AB).



Quick Hull Algorithm
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5. Keep on doing so on until no more points are 
left, the recursion has come to an end and the 
points selected constitute the convex hull.

6. Just like the Quicksort algorithm, it has the 
expected time complexity of O(n log n), but may 
degenerate to O(nh) = O(n^2) in the worst 
case.



K-means Algorithm
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• You’ll define a target number k, which refers to the 
number of centroids you need in the dataset. 

• Every data point is allocated to each of the clusters 
through reducing the in-cluster sum of squares.

• The ‘means’ in the K-means refers to averaging of 
the data; that is, finding the centroid.



K-means Algorithm
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1. k initial "means" (in this 
case k=3) are randomly 
generated within the data 
domain (shown in color).

2. k clusters are created by 
associating every observation with the 
nearest mean. The partitions here 
represent the Voronoi 
diagram generated by the means.



K-means Algorithm
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4. Steps 2 and 3 are 
repeated until 
convergence has 
been reached.

3. The centroid of each of 
the k clusters becomes 
the new mean.



Parallel Convex Hull Using K-Means Clustering 
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1. N points are divided into K clusters using K means.

2. Quick Hull is applied on each cluster (iteratively inside each cluster as well).

3. The convex hull points from these clusters are combined.

4. Quick Hull is applied again and a final Hull of all clusters is computed.



Convex Hull Using K-Means Clustering 
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Points Time
100 0.0010
500 0.0014
1000 0.0015
5000 0.0025
10000 0.0050
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Performance on 1 node,  2 cores small set of 
points

Points Time
100 0.0012
500 0.0016
1000 0.0010
5000 0.0038
10000 0.0056

8 clusters 16 clusters
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n run1 run2 run3 avg speedup efficiency cost

K = 128 AND 1 MILLION DATA POINTS TIME: SECONDS

1 113.33 113.60 110.67 112.53 113

2 69.94 69.76 66.24 68.65 1.0 1.0 138
4 54.16 48.78 46.90 49.95 2.26 0.565 200
8 41.91 41.94 41.80 41.88 2.69 0.336 336
16 35.84 31.43 33.30 33.53 3.32 0.207 544
32 30.46 29.64 28.52 29.54 3.76 0.117 960
64 26.25 27.34 27.22 26.93 4.18 0.065 1728
128 23.92 24.16 24.08 24.05 4.7 0.036 3072
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n run1 run2 run3 avg speedup efficiency cost

K = 256 AND 1 MILLION DATA POINTS TIME: SECONDS

1 207.21 207.85 207.55 207.54 208

2 126.83 124.92 125.86 125.87 1.0 1.0 252

4 84.50 85.05 84.59 84.71 2.44 0.61 340

8 64.89 65.17 66.17 65.41 3.2 0.4 520

16 56.22 56.48 54.66 55.79 3.71 0.231 896

32 51.84 52.01 52.03 51.96 4 0.125 1728

64 49.39 49.74 49.42 49.52 4.16 0.065 3200

128 47.04 46.51 46.21 46.59 4.42 0.034 6016



20

No. of processors (X) v/s time(Y)  
Series 1:k=128 and Series 2: k=256 1M pts
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n run1 run2 run3 avg speedup efficiency cost

K = 128 AND 10 MILLION DATA POINTS TIME: SECONDS

1 1058.82 1041.50 1039.49 1045.40 1045

2 693.01 691.87 692.23 692.37 1.0 1.0 1384

4 482.97 482.92 478.54 481.47 2.15 0.537 1940

8 393.13 390.74 392.13 392.00 2.66 0.332 3136

16 383.19 382.37 382.35 382.30 2.73 0.170 6112

32 313.55 310.20 288.31 304.02 3.43 0.107 9782

64 285.90 286.05 292.12 288.02 3.62 0.056 18432

128 237.32 235.97 234.92 236.07 4.41 0.034 30208
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n run1 run2 run3 avg speedup efficiency cost

K = 256 AND 10 MILLION DATA POINTS TIME: SECONDS

1 2063.62 2041.27 2126.57 2077.15 2077

2 1318.75 1319.66 1303.87 1314.1 1.0 1.0 2628

4 914.09 915.11 882.20 903.80 2.29 0.572 3616

8 723.37 722.27 723.23 722.96 2.87 0.358 5784

16 597.26 608.87 608.42 604.85 3.43 0.214 9680

32 552.50 564.53 551.43 556.15 3.73 0.116 17792

64 542.21 542.30 553.32 545.94 3.8 0.059 34944

128 540.02 541.20 535.58 538.27 3.85 0.030 68992
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No. of processors (X) v/s time(Y)  
Series 1:k=128 and Series 2: k=256 10 mil pts
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Inferences:

• The ideal # of processors for 1 million data points is 16.

• The ideal # of processors for 10 million data points is 32. 

• If # of clusters is less than the no of processors, the performance is degraded since 
PEs have < 1 (k/n) clusters to work with.

• After 32 the run time difference is almost negligible for the increase in the # of PEs.
Reason: The communication time b/w PEs increases and significantly dominates the 

local computation time.
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Challenges:

• Sequencing the Quick Hull and K-means parallel events.

• Queue time to access large memory servers.

• Parallelizing the Hybrid way.



• Implement the algorithm in Open MP.

• Implement the algorithm Hybrid (OpenMP+MPI).

• Compare scalability of MPI, OpenMP and Hybrid approaches.

• See the effect of choosing a different distance metric for clustering 
and/or a different strategy to initialize clusters.

• Implement the algorithm for 3+ D data.
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Future scope:
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Thank you.
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