
PARALLEL QUICKSORT
CSE 633: PARALLEL ALGORITHMS

GUIDED BY DR. RUSS MILLER

SRI ABINAYA - 50292993



AGENDA

• QUICKSORT

• SEQUENTIAL QUICKSORT

• IMPLEMENTATION OF SEQUENTIAL QUICKSORT

• PARALLEL QUICKSORT

• IMPLEMENTATION OF PARALLEL QUICKSORT

• CORRECTION

• CHALLENGES

• RESULTS



THE PROBLEM-QUICKSORT

To sort a list of numbers in either increasing or decreasing order.

QuickSort is a Divide and Conquer algorithm.

On the average, it has O(n log n) complexity, making quicksort suitable 

for sorting big data volumes. So, it is important to make it parallel. 



SEQUENTIAL QUICKSORT 
ALGORITHM

• Select median as pivot from the sample data set picked from the actual data 

set.

• Divide the list into two sub lists: a “low list” containing numbers smaller than the 

pivot, and a “high list” containing numbers larger than the pivot 

• The low list and high list recursively repeat the procedure to sort themselves 

• The final sorted result is the concatenation of the sorted low list, the pivot, and 

the sorted high list.



0 1 2 3 4 5 6

10 80 30 90 40 50 70



0 1 2 3 4 5 6

10 80 30 90 40 50 70

Pivot



0 1 2 3 4 5 6

10 80 30 90 40 50 70

Pivoti j



0 1 2 3 4 5 6

10 80 30 90 40 50 70

Pivoti j



J IS A LOOP VARIABLE

0 1 2 3 4 5 6

10 80 30 90 40 50 70

Pivoti j



J IS A LOOP VARIABLE

Pivoti j

0 1 2 3 4 5 6

10 80 30 90 40 50 70



J IS A LOOP VARIABLE

Pivoti j

0 1 2 3 4 5 6

10 80 30 90 40 50 70



J IS A LOOP VARIABLE

Pivoti j

0 1 2 3 4 5 6

10 30 80 90 40 50 70



J IS A LOOP VARIABLE

Pivoti j

0 1 2 3 4 5 6

10 30 80 90 40 50 70



J IS A LOOP VARIABLE

Pivoti j

0 1 2 3 4 5 6

10 30 80 90 40 50 70



J IS A LOOP VARIABLE

Pivoti j

0 1 2 3 4 5 6

10 30 40 90 80 50 70



J IS A LOOP VARIABLE

Pivoti j

0 1 2 3 4 5 6

10 30 40 90 80 50 70



J IS A LOOP VARIABLE

Pivoti

0 1 2 3 4 5 6

10 30 40 50 80 90 70



J IS A LOOP VARIABLE

0 1 2 3

10 30 40 50

4 5 6

70 90 80

PivotPivot



J IS A LOOP VARIABLE

0 1 2 3 4 5 6

10 30 40 50 70 80 90





PARALLEL QUICK SORT ALGORITHM 

• We choose a pivot which nearer to median by taking samples from one of the processes and 

broadcast it to every process.

• Each process divides its unsorted list into two lists: those smaller than (or equal) the pivot, those greater 

than the pivot Each process in the upper half of the process list sends its “low list” to a partner process 

in the lower half of the process list and receives a “high list” in return 

• Now, the upper-half processes have only values greater than the pivot, and the lower-half processes 

have only values smaller than the pivot. 

• Thereafter, the processes divide themselves into two groups and the algorithm recurses. 

• After log P recursions, every process has an unsorted list of values completely disjoint from the values 

held by the other processes. 

• The largest value on process i will be smaller than the smallest value held by process i + 1. Each 

process finally sorts its list using sequential quicksort.



PARALLEL QUICKSORT



PARALLEL QUICKSORT



PARALLEL QUICKSORT



PARALLEL QUICKSORT



IMPLEMENTATION OF PARALLEL 
QUICKSORT

• Created sample data set and chosen the median which is the pivot element

• Distributed the data among all the processors using send and receive command.

• The pivot is chosen and sent to all the processors

• Called the parallel quick sort function.

• Function calls the partition function to partition the data.

• Exchanges the low list and up list based on which processor using send and recv
command.

• Recursively it calls itself.

• Once the iteration reaches log (number of pes).

• Called sequential quick sort function.





RESULT











CORRECTION

• Included median to find the pivot element.



CHALLENGES

• MPI4py documentation.

• Proper barriers since the data is transferred to particular processor.

• Recursion in parallel.



REFERENCES

• MPI documents

• Miller Algorithms Sequential and Parallel A Unified Approach




