
‘-

1

By

Srinath Vikramakumar –
svikrama@buffalo.edu

Guided by:

Dr. Russ Miller and Dr. Matthew Jones

PARALLEL
IMPLEMENTATION
OF BITONIC SORT
– USING MPI

‘-

2

• Arrange an unordered collection of items into a meaningful order.

• The most frequently used orders are numerical order and

lexicographical order.

• One of the most commonly used and well-studied kernels.

• Sorting can be comparison-based or noncomparison-based.

• The fundamental operation of comparison-based sorting is

compare-exchange.

• The lower bound on any sequential comparison-based sort of n

numbers is Θ(n log n).

Sorting

‘-

3

A sequence a = (a1, a2, . . ., ap) of p numbers is

said to be bitonic if and only if

• a1 ≤ a2 ≤ . . . ≤ ak≥ . . . ≥ ap, for some k, 1 < k

< p, or

• a1 ≥ a2 ≥ . . . ≥ ak≤ . . . ≤ ap, for some k, 1 < k

< p, or

• ‘a’ can be split into two parts that can be

interchanged to give either of the first two

cases.

Bitonic Sequence

‘-

4

Something like this…

Value of

element

aia0 a1 a2 a3 a4 a5 a6 a7

{ 3, 5, 7, 9, 8, 6, 4, 2 }

‘-

5

Or this…

Value of

element

aia0 a1 a2 a3 a4 a5 a6 a7

{ 8, 6, 4, 2, 3, 5, 7, 9}

‘-

6

This too…

{3,1,2,4,7,8,6,5}

‘-

7

Bitonic Sorting

• To sort an unordered sequence, sequences are merged into larger

bitonic sequences, starting with pairs of adjacent numbers.

• By a compare-and-exchange operation, pairs of adjacent numbers

formed into increasing sequences and decreasing sequences. Pairs

form a bitonic sequence of twice the size of each original sequences.

• By repeating this process, bitonic sequences of larger and larger

lengths obtained.

• In the final step, a single bitonic sequence sorted into a single

increasing sequence.

‘-

8

Bitonic Sort Example:

‘-

9

Bitonic Sort Efficiency

When (P=n)

)(log
)(logloglog

nO
nn

iT
ni

i

bitonic

par

2

1 2

1



 





‘-

10

Bitonic Sort Efficiency

When (P<<n)

)log...321(
P

N
2

P

N
log

P

N

 Merge Bitonic Parallel Sort Local

P

T bitonic

par





)}
2

)log1(log
(2

P

N
{log

P

N

PP 


)logloglogN(log
P

N
 2 PPP 

)logN(log
P

N
 2 PT bitonic

par 

‘-

11

• Keeping the amount of data constant and Increasing number of
processors and analyzing the execution time.

• Keeping the number of processors constant and Increasing the
amount of data and analyzing the execution time.

• Increasing number of processors and amount of data per
processors proportionally and analyzing the execution time.

• Keeping small amount of constant data and increasing the number
of processors and analyzing the execution time.

• Keeping the number of processors equal to the number of data and
analyzing the execution time.

Experiments:

‘-

12

Number of processors VS Execution time

Constant data size: 32000000

Number of

processors

Execution time in

seconds

1 11.133358

2 6.656947

4 4.506986

8 4.414858

16 2.765411

32 1.425334

64 1.232986

128 0.750448

‘-

13

‘-

14

Data size VS Execution time

Constant number of processors = 4
Number of data Execution time in

seconds

16000000 2.151250

32000000 4.491756

64000000 9.171313

128000000 19.184456

256000000 39.466040

‘-

15

‘-

16

Number of data VS Number of processors VS Execution time

Increasing number of
processors as well as
number of data items

Number of

Processors

Number of Data

per processor

Execution time

in seconds

2 2000000 0.352784

4 4000000 0.507792

8 8000000 1.013867

16 16000000 1.351265

32 32000000 1.435955

64 64000000 2.448596

128 128000000 3.239658

‘-

17

‘-

18

Number of processors VS Execution time

Small Constant data= 1000
Number of data per

processor

Execution time in

seconds

2 0.0005

4 0.0003

8 0.0002

16 0.00019

32 0.0003

64 0.00041

‘-

19

‘-

20

Number of processors VS Execution time

Number of processors = Data

Number of Data and

Number of processors

Execution time in

seconds

2
0.00006

4
0.0001

8
0.00017

16
0.0002

32
0.000218

64
0.00027

128
0.0003

‘-

21

‘-

22

• Compare with other sorting routines.

• Compare distributed memory models(MPI) with shared

memory models(OpenMP).

• Analyze performance of GPU’s.

• Focus on unsolved problems.

Future Work

‘-

23

• Algorithms Sequential and Parallel: A Unified Approach by Russ

Miller and Laurence Boxer

• http://en.wikipedia.org/wiki/Bitonic_sorter

• CCR: Resources and Tutorial Materials by Dr. Matthew Jones

References

‘-

24

Thank You!!!

