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• Given a Sequence of numbers find a continuous subsequence of those 
numbers whose sum is maximum.

• This problem is only interesting only when there are negative numbers 
in the sequence.

Problem Definition
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• We first compute the parallel prefix sums of all the numbers in the 
sequence.

• S = {p0, p1, . . . , pn−1} of X={x0, x1 ,..., xn−1}, where pi =x0 ⊗...⊗xi. 

• Next, compute the parallel postfix maximum of S.

• Let mi denote the value of the postfix-max at position i, and let ai be the 
associated index. 

• Next, for each i, compute bi = mi − pi + xi and the solution corresponds 
to the maximum of the bi’s, where u is the index of the position where 
the maximum of the bi’s is found and v = au. 

• The maximum sum of any subsequence will be the maximum value of 
b and the subsequence starts from position u to position v.

Algorithm
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• Consider the input sequence X = {-3, 5, 2, -1, -4, 8, 10, -2}

• The parallel prefix sum of X is S = {-3, 2, 4, 3, -1, 7, 17, 15}

m0 = 17 a0 = 6 b0 = 17 − (−3) + (−3) = 17 

m1 = 17 a1 = 6 b1 = 17 − 2 + 5 = 20

m2 = 17 a2 = 6 b2 = 17 − 4 + 2 = 15

m3 = 17 a3 = 6 b3 = 17 − 3 + (−1) = 13

m4 = 17 a4 = 6 b4 = 17 − (−1) + (−4) = 14 

m5 = 17 a5 = 6 b5 = 17 − 7 + 8 = 18

m6 = 17 a6 = 6 b6 = 17 − 17 + 10 = 10

m7 = 15 a7 = 7 b7 = 15 − 15 + (−2) = −2 

We have a maximum subsequence sum of b1 = 20. This corresponds to u = 1 and v = a1 = 6, or the 
subsequence {5, 2, −1, −4, 8, 10}. 

Example 
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• The maximum speedup achievable by an n-processor machine is given by Sn ≤ 1/[f + (1 − f )/n], 
where f  is the fraction of operations in the computation that must be performed sequentially.

• So, for example, if five percent of the operations in a given computation must be performed 
sequentially, then the speedup can never be greater than 20, regardless of how many 
processors are used. 

• Therefore, just a small number of sequential operations can significantly limit the speedup of an 
algorithm on a parallel machine. 

Amdahl’s Law
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1 Million

No of Processing 
Elements Running Time

2 2.391577244
4 1.362393808

8 0.9119006634

16 0.7162507057

32 0.7407873631

64 0.8956463337

128 1.277443504
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1 Million
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10 Million

No of Processing 
Elements Running Time

2 21.34504418

4 10.92210212

8 5.540159798

16 3.150883675

32 1.7878613

64 1.707107735

128 1.308482885
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10 Million
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25 Million

No of Processing 
Elements Running Time

2 51.7721211

4 26.34880099

8 11.59748354

16 7.043922663

32 3.759987545

64 2.303646898

128 1.823378897
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25 Million
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50 Million

No of Processing Elements Running Time

2 103.2250272

4 52.55032582

8 26.81822791

16 13.643015

32 7.02824626

64 4.069253588

128 2.656966639
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50 Million
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100 Million

No of Processing Elements Running Time

2 208.3678195

4 103.3444152

8 52.52726979

16 26.95969448

32 13.85389056

64 7.401434422

128 4.283970213
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100 Million



‘-

17

• Amdahl’s Law overlooks the fact that for many algorithms, the percentage of required sequential 
operations decreases as the size of the problem increases. 

• Further, it is often the case that as one scales up a parallel machine, scientists often want to 
solve larger and larger problems, and not just the same problems more efficiently. 

• That is, it is common enough to find that for a given machine, scientists will want to solve the 
largest problem that fits on that machine, and complain that the machine isn’t just a bit bigger so 
that they could solve the larger problem they really want to consider. 

Reevaluating Amdahl's Law(1988)
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1 Million

No of Processing Elements Averages

2 4.540847921

4 4.487995958

8 4.542543221

16 4.679025888

32 4.685496664

64 4.940221119

128 5.196066475
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1 Million
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5 Million

No of Processing Elements Averages

2 20.90057454

4 21.50881248

8 21.32558784

16 21.40901031

32 21.75743251

64 22.02179737

128 22.59391766
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5 Million
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10 Million

No of Processing Elements Averages

2 41.72954001

4 42.20077882

8 42.13703408

16 42.59144878

32 43.01147895

64 42.74766273

128 44.10727668
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10 Million
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25 Million

No of Processing Elements Averages

2 103.2897964

4 104.3829672

8 103.8636455

16 105.1728307

32 105.783287

64 107.3733441

128 107.471099
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25 Million
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50 Million

No of Processing Elements Averages
2 207.0414

4 208.5352646

8 207.2463433

16 206.4236812

32 211.6478159

64 216.8037506

128 218.5137507
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50 Million
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100 Million

No of Processing Elements Averages

2 414.6446681

4 417.4684594

8 417.4312147

16 426.1201825

32 433.8598955

64 436.3142024

128 440.2571783
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100 Million
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• Algorithms Sequential and Parallel, A Unified Approach 
~Russ Miller, Laurence Boxer 

• http://www.johngustafson.net/pubs/pub13/amdahl.html

• Mpi4py official documentation.

References 
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Appendix A : Gustafson’s Small Data 

2 0.4432077408

4 0.7110137939

8 0.4995107651

16 0.4698078632

32 0.5200581551

64 0.6280536652

128 1.169249296
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Appendix A : Gustafson’s Small Data 
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Appendix B : Amdahl's Small Data 

2 0.278011322

4 0.4786112309

8 0.4027721882

16 0.5404441357

32 0.763256073

64 2.063477755

128 1.271056652
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Appendix B : Amdahl's Small Data 


