# PARALLELIZING MAXIMUM SUM SUBSEQUENCE 

Srinivas Rishindra Pothireddi

University at Buffalo The State University of New York


## Table of Contents

- Problem Definition
- Algorithm
- Example
- Amdahl's Law
- Reevaluating Amdahl's Law(1988)
- Appendix


## Problem Definition

- Given a Sequence of numbers find a continuous subsequence of those numbers whose sum is maximum.
- This problem is only interesting only when there are negative numbers in the sequence.


## Algorithm

- We first compute the parallel prefix sums of all the numbers in the sequence.
- $S=\{p 0, p 1, \ldots, p n-1\}$ of $X=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$, where $p_{i}=x_{0} \otimes \ldots \otimes x_{i}$.
- Next, compute the parallel postfix maximum of $S$.
- Let $m_{i}$ denote the value of the postix-max at position $i$, and let $a_{i}$ be the associated index.
- Next, for each $i$, compute $b_{i}=m_{i}-p_{i}+x_{i}$ and the solution corresponds to the maximum of the $b_{i}$ ' $s$, where $u$ is the index of the position where the maximum of the $b_{i}$ 's is found and $v=a_{u}$.
- The maximum sum of any subsequence will be the maximum value of b and the subsequence starts from position u to position v.


## Example

- Consider the input sequence $X=\{-3,5,2,-1,-4,8,10,-2\}$
- The parallel prefix sum of $X$ is $S=\{-3,2,4,3,-1,7,17,15\}$
$\mathrm{m}_{0}=17$

$$
\begin{aligned}
& a_{0}=6 \\
& a_{1}=6 \\
& a_{2}=6 \\
& a_{3}=6 \\
& a_{4}=6 \\
& a_{5}=6 \\
& a_{6}=6 \\
& a_{7}=7
\end{aligned}
$$

$$
b_{0}=17-(-3)+(-3)=17
$$

$$
m_{1}=17 \quad a_{1}=6
$$

$$
b_{1}=17-2+5=20
$$

$$
m_{2}=17
$$

$$
b_{2}=17-4+2=15
$$

$$
m_{3}=17
$$

$$
b_{3}=17-3+(-1)=13
$$

$$
m_{4}=17
$$

$$
b_{4}=17-(-1)+(-4)=14
$$

$$
m_{5}=17
$$

$$
b_{5}=17-7+8=18
$$

$$
m_{6}=17
$$

$$
b_{6}=17-17+10=10
$$

$$
b_{7}=15-15+(-2)=-2
$$

We have a maximum subsequence sum of $b_{1}=20$. This corresponds to $u=1$ and $v=a_{1}=6$, or the subsequence $\{5,2,-1,-4,8,10\}$.

## Amdahl's Law

- The maximum speedup achievable by an $n$-processor machine is given by $S_{n} \leq 1 /[f+(1-f) / n]$, where $f$ is the fraction of operations in the computation that must be performed sequentially.
- So, for example, if five percent of the operations in a given computation must be performed sequentially, then the speedup can never be greater than 20, regardless of how many processors are used.
- Therefore, just a small number of sequential operations can significantly limit the speedup of an algorithm on a parallel machine.


## 1 Million

| No of Processing <br> Elements |  | Running Time |
| ---: | ---: | ---: |
|  | 2 | 2.391577244 |
|  | 4 | 1.362393808 |
| 8 | 0.9119006634 |  |
| 16 | 0.7162507057 |  |
| 32 | 0.7407873631 |  |
| 64 | 0.8956463337 |  |
| 128 | 1.277443504 |  |

## 1 Million

Running Time


## 10 Million

| No of Processing <br> Elements |  |  |
| ---: | ---: | :--- |
|  | 2 | Running Time |
|  | 21.34504418 |  |
| 4 | 10.92210212 |  |
| 8 | 5.540159798 |  |
| 16 | 3.150883675 |  |
| 32 | 1.7878613 |  |
| 64 | 1.707107735 |  |
| 128 | 1.308482885 |  |

## 10 Million

## Running Time



## 25 Million

| No of Processing <br> Elements |  |  |
| ---: | ---: | :--- |
|  | 2 | Running Time |
|  | 4 | 26.3721211 |
| 8 | 11.59748354 |  |
| 16 | 7.043922663 |  |
| 32 | 3.759987545 |  |
| 64 | 2.303646898 |  |
| 128 | 1.823378897 |  |

## 25 Million

## Running Time



## 50 Million

|  |  |  |
| ---: | ---: | :--- |
| No of Processing Elements |  | Running Time |
|  | 2 | 103.2250272 |
| 4 | 52.55032582 |  |
|  | 8 | 26.81822791 |
| 16 | 13.643015 |  |
| 32 | 7.02824626 |  |
| 64 | 4.069253588 |  |
| 128 | 2.656966639 |  |

## 50 Million

Running Time


## 100 Million

|  |  |  |
| ---: | ---: | ---: |
| No of Processing Elements | Running Time |  |
| 2 | 208.3678195 |  |
| 4 | 103.3444152 |  |
| 8 | 52.52726979 |  |
| 16 | 26.95969448 |  |
| 32 | 13.85389056 |  |
| 64 | 7.401434422 |  |
| 128 | 4.283970213 |  |

## 100 Million

## Running Time



## Reevaluating Amdahl's Law(1988)

- Amdahl's Law overlooks the fact that for many algorithms, the percentage of required sequential operations decreases as the size of the problem increases.
- Further, it is often the case that as one scales up a parallel machine, scientists often want to solve larger and larger problems, and not just the same problems more efficiently.
- That is, it is common enough to find that for a given machine, scientists will want to solve the largest problem that fits on that machine, and complain that the machine isn't just a bit bigger so that they could solve the larger problem they really want to consider.

1 Million

|  |  |  |
| ---: | ---: | ---: |
| No of Processing Elements | Averages |  |
|  | 2 | 4.540847921 |
|  | 4 | 4.487995958 |
|  | 8 | 4.542543221 |
| 16 | 4.679025888 |  |
| 64 | 4.685496664 |  |
| 128 |  |  |

## 1 Million



## 5 Million

|  |  |  |
| ---: | ---: | ---: |
| No of Processing Elements | Averages |  |
|  | 2 |  |
|  | 4 | 20.90057454 |
| 16 | 21.50881248 |  |
| 32 | 21.32558784 |  |
| 64 | 21.40901031 |  |
| 128 | 21.75743251 |  |

## 5 Million

Averages


## 4 University at Buffalo The State University of New York

## 10 Million

|  |  |  |
| ---: | ---: | ---: |
| No of Processing Elements | Averages |  |
|  | 2 |  |
|  | 4 | 41.72954001 |
|  | 8 | 42.20077882 |
| 16 | 42.13703408 |  |
| 62 | 42.59144878 |  |
| 128 | 43.01147895 |  |

## 10 Million

Averages


25 Million

| No of Processing Elements | Averages |  |
| ---: | ---: | ---: |
|  | 2 | 103.2897964 |
|  | 4 | 104.3829672 |
| 16 | 103.8636455 |  |
| 32 | 105.1728307 |  |
| 64 | 105.783287 |  |
| 128 | 107.3733441 |  |

## 25 Million

Averages


## 50 Million

|  |  |  |
| ---: | ---: | ---: |
| No of Processing Elements |  | Averages |
|  | 2 | 207.0414 |
|  | 4 | 208.5352646 |
| 16 | 207.2463433 |  |
| 32 | 206.4236812 |  |
| 64 | 211.6478159 |  |
| 128 | 216.8037506 |  |

## 50 Million

Averages


## 100 Million

|  |  |  |
| ---: | ---: | ---: |
| No of Processing Elements | Averages |  |
|  | 2 |  |
|  | 4 | 414.6446681 |
|  | 8 | 417.4684594 |
| 16 | 417.4312147 |  |
| 64 | 426.1201825 |  |
| 128 | 433.8598955 |  |

## 100 Million

## Averages



## References

- Algorithms Sequential and Parallel, A Unified Approach
~Russ Miller, Laurence Boxer
- http://www.johngustafson.net/pubs/pub13/amdahl.html
- Mpi4py official documentation.
b


## Appendix A : Gustafson's Small Data

|  | 2 |
| ---: | ---: |
|  | 0.4432077408 |
| 16 | 0.7110137939 |
| 32 | 0.4995107651 |
| 64 | 0.4698078632 |
| 128 | 0.5200581551 |
|  | 0.6280536652 |

## Appendix A : Gustafson's Small Data



## Appendix B : Amdahl's Small Data

| 2 | 0.278011322 |
| ---: | ---: |
| 4 | 0.4786112309 |
| 8 | 0.4027721882 |
| 16 | 0.5404441357 |
| 62 | 0.763256073 |
| 128 | 2.063477755 |

## Appendix B : Amdahl's Small Data



