PARALLELIZING MAXIMUM SUM SUBSEQUENCE

Srinivas Rishindra Pothireddi

University at Buffalo The State University of New York

Table of Contents

- Problem Definition
- Algorithm
- Example
- Amdahl's Law
- Reevaluating Amdahl's Law(1988)
- Appendix

Problem Definition

- Given a Sequence of numbers find a continuous subsequence of those numbers whose sum is maximum.
- This problem is only interesting only when there are negative numbers in the sequence.

University at Buffalo The State University of New York

Algorithm

- We first compute the parallel prefix sums of all the numbers in the sequence.
- $S = \{p0, p1, ..., pn-1\} \text{ of } X = \{x_0, x_1, ..., x_{n-1}\}, \text{ where } p_i = x_0 \otimes ... \otimes x_i.$
- Next, compute the parallel postfix maximum of S.
- Let m_i denote the value of the postfix-max at position i, and let a_i be the associated index.
- Next, for each i, compute b_i = m_i p_i + x_i and the solution corresponds to the maximum of the b_i's, where u is the index of the position where the maximum of the b_i's is found and v = a_u.
- The maximum sum of any subsequence will be the maximum value of b and the subsequence starts from position u to position v.

Example

- Consider the input sequence X = {-3, 5, 2, -1, -4, 8, 10, -2}
- The parallel prefix sum of X is S = {-3, 2, 4, 3, -1, 7, 17, 15}

$m_0 = 17$	a ₀ = 6	$b_0 = 17 - (-3) + (-3) = 17$	
m ₁ = 17	a ₁ = 6	b ₁ = 17 - 2 + 5 = 20	
m ₂ = 17	a ₂ = 6	b ₂ = 17 - 4 + 2 = 15	
m ₃ = 17	a ₃ = 6	$b_3 = 17 - 3 + (-1) = 13$	
m ₄ = 17	a ₄ = 6	$b_4 = 17 - (-1) + (-4) = 14$	
m ₅ = 17	a ₅ = 6	b ₅ = 17 - 7 + 8 = 18	
m ₆ = 17	a ₆ = 6	b ₆ = 17 - 17 + 10 = 10	
m ₇ = 15	a ₇ = 7	b ₇ = 15 − 15 + (−2) = −2	

We have a maximum subsequence sum of $b_1 = 20$. This corresponds to u = 1 and $v = a_1 = 6$, or the subsequence {5, 2, -1, -4, 8, 10}.

Amdahl's Law

- The maximum speedup achievable by an *n*-processor machine is given by $S_n \le 1/[f + (1 f)/n]$, where *f* is the fraction of operations in the computation that must be performed sequentially.
- So, for example, if five percent of the operations in a given computation must be performed sequentially, then the speedup can never be greater than 20, *regardless of how many processors are used.*
- Therefore, just a small number of sequential operations can significantly limit the speedup of an algorithm on a parallel machine.

No of Processing Elements	Running Time
	2.391577244
	1.362393808
	0.9119006634
16	0.7162507057
32	0.7407873631
64	0.8956463337
128	1.277443504

.....

No of Processing Elements	Running Time
2	21.34504418
4	10.92210212
8	5.540159798
16	3.150883675
32	1.7878613
64	1.707107735
128	1.308482885

No of Processing Elements	Running Time
2	51.7721211
4	26.34880099
8	11.59748354
16	7.043922663
32	3.759987545
64	2.303646898
128	1.823378897

No of Processing Elements	Running Time
2	103.2250272
4	52.55032582
8	26.81822791
16	13.643015
32	7.02824626
64	4.069253588
128	2.656966639

No of Processing Elements	Running Time
2	208.3678195
4	103.3444152
8	52.52726979
16	26.95969448
32	13.85389056
64	7.401434422
128	4.283970213

Reevaluating Amdahl's Law(1988)

- Amdahl's Law overlooks the fact that for many algorithms, the percentage of required sequential operations decreases as the size of the *problem* increases.
- Further, it is often the case that as one scales up a parallel machine, scientists often want to solve larger and larger problems, and not just the same problems more efficiently.
- That is, it is common enough to find that for a given machine, scientists will want to solve the largest problem that fits on that machine, and complain that the machine isn't just a bit bigger so that they could solve the larger problem they really want to consider.

University at Buffalo The State University of New York

1 Million

No of Processing Elements	Averages
	7.0014900
2	4.540847921
4	4.487995958
8	4.542543221
16	4.679025888
32	4.685496664
64	4.940221119
128	5.196066475

No of Processing Elements	Averages
2	20.90057454
4	21.50881248
8	21.32558784
16	21.40901031
32	21.75743251
64	22.02179737
128	22.59391766

University at Buffalo The State University of New York

No of Processing Elements	Averages
2	41.72954001
4	42.20077882
8	42.13703408
16	42.59144878
32	43.01147895
64	42.74766273
128	44.10727668

No. of Processing Flomenta	Averages
NO OF Processing Elements	Averages
2	103.2897964
4	104.3829672
8	103.8636455
16	105.1728307
32	105.783287
64	107.3733441
128	107.471099

Averages

No of Processing Elements	Averages
2	207.0414
4	208.5352646
8	207.2463433
16	206.4236812
32	211.6478159
64	216.8037506
128	218.5137507

Averages

University at Buffalo The State University of New York

No of Processing Elements	Averages
2	414.6446681
4	417.4684594
8	417.4312147
16	426.1201825
32	433.8598955
64	436.3142024
128	440.2571783

Averages

References

- Algorithms Sequential and Parallel, A Unified Approach
 ~Russ Miller, Laurence Boxer
- <u>http://www.johngustafson.net/pubs/pub13/amdahl.html</u>
- Mpi4py official documentation.

Appendix A : Gustafson's Small Data

0.4432077408	2
0.7110137939	4
0.4995107651	8
0.4698078632	16
0.5200581551	32
0.6280536652	64
1.169249296	128

Appendix A : Gustafson's Small Data

Appendix B : Amdahl's Small Data

0.278011322	2
0.4786112309	4
0.4027721882	8
0.5404441357	16
0.763256073	32
2.063477755	64
1.271056652	128

Appendix B : Amdahl's Small Data

