
Hyper Quick Sort
(Parallel Quick Sort)

-

Prashant Srivastava

CSE 633 Spring 2014

Parallel Quick Sort

Hyper quick sort is an implementation of quick sort on

a hypercube.

Let the communication network topology be an N-

dimensional hypercube (i.e. the number of

processors is equal to p=2N).

Hypercube

Formally, a hypercube of size n consists of n

processors indexed by the integers {0,1, . . . , n −

1}, where n > 0 is an integral power of 2. Processors

A and B are connected if and only if their unique

log2 n-bit strings differ in exactly one position.

Algorithm 1

• We randomly choose a pivot from one of the processes and broadcast it to every

process.

• Each process divides its unsorted list into two lists: those smaller than (or equal)

the pivot, those greater than the pivot.

• Each process in the upper half of the process list sends its “low list” to a partner

process in the lower half of the process list and receives a “high list” in return.

• Now, the upper-half processes have only values greater than The pivot, and the

lower-half processes have only values smaller than the pivot.

• Thereafter, the processes divide themselves into two groups and the algorithm

recurses.

• After logP recursions, every process has an unsorted list of values completely

disjoint from the values held by the other processes.

• The largest value on process i will be smaller than the smallest value held by

process i + 1.

• Each process can sort its list using sequential quicksort.

Algorithm 2(My Implementation)

• Each process starts with a sequential quicksort on its local list.

• Now we have a better chance to choose a pivot that is close to the
true median.

• The process that is responsible for choosing the pivot can pick
the median of its local list.

• The three next steps of hyper quick sort are the same as in parallel
algorithm 1

• Broadcast

• Division of “low list” and high list”

• Swap between partner processes

• The next step is different in hyper quick sort.

• On each process, the remaining half of local list and the
received half-list are merged into a sorted local list.

• Recursion within upper-half processes and lower-half processes.

Expected Case Running Time

The N log N term represents the sequential running

time from Step 2. The d(d + 1)/2 term represents

the broadcast step used in Step 4. The dN term

represents the time required for the exchanging and

merging of the sets of elements.

Observations

Log P steps are needed in the recursion.

• The expected number of times a value is passed from
one process to another is log P / 2 , that is quite some
communication overhead!

• The median value chosen from a local segment may
still be quite different from the true median of the
entire list.

Although better than parallel quicksort algorithm 1, load
imbalance may still arise.

Solution:

• Algorithm 3 – parallel sorting by regular sampling

Limitations

The number of processors has to a be a power of 2.

Very High communication overhead.

Results – Sequential Sort No. of Processors Data Running Time
(msec)

1 8000 0.69

1 16000 1.5

1 32000 3.1

1 64000 6.8

1 128000 13.9

1 256000 29.2

Sequential Sort

0

5

10

15

20

25

30

0 25000 50000 75000 100000 125000 150000 175000 200000 225000 250000

DATA

E
x

ce
cu

ti
o

n

T
im

e

Results
No. of Processors Data/Processor Running

Time(msec)

2 10,000 1.2

4 10,000 1.5

8 10,000 2.3

16 10,000 3.6

32 10,000 4.7

64 10,000 5.7

Results

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

No. of Processors

E
x

e
cu

ti
o

n
 T

im
e

Results

No. of Processors Data Running Time
(msec)

2 128000 8.8

4 128000 4.8

8 128000 3.4

16 128000 3.5

32 128000 4.2

64 128000 4.9

Results

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70

No. of Processors

E
x

e
cu

ti
o

n
 T

im
e

Results

No. of Processors Data/Processor Running Time
(msec)

32 8000 8.4

32 16000 15.2

32 32000 25.4

32 64000 55.6

32 128000 105.1

32 256000 207.3

Results

0

50

100

150

200

250

0 50000 100000 150000 200000 250000 300000

Data/Processor

E
x

e
cu

ti
o

n
 T

im
e

Reference

Algorithms, Sequential and Parallel: A Unified

Approach – Russ Miller and Laurence Boxer. 3rd

Edition.

http://www.uio.no/studier/emner/matnat/ifi/INF338

0/v10/undervisningsmateriale/inf3380-week12.pdf

THANK YOU

