
PARALLEL
BREADTH-FIRST SEARCH
USING MPI

CSE 633: Parallel Algorithms

Guide: Dr. Russ Miller

Presenter: Sumanth Thota

• Breadth-First Search

• Application of BFS

• Sequential BFS Algorithm

• Communication

• Parallel BFS Algorithm & implementation

• Results

• Conclusion

• References

Breadth-First Search

• BFS is a graph traversal algorithm that visits all the vertices of a

graph in breadth-first order.

• It starts at the root node and visits all the nodes at the same

level before moving on to the next level.

• BFS is typically used to find the shortest path between two

nodes.

• One drawback of BFS is that it requires more memory as it

needs to keep track of all the nodes in the queue.

3

Root node

Applications of BFS

• BFS is used by search engines like Google to crawl the web and

index web pages.

• BFS can be used to find the shortest path between two users on

a social networking site like Facebook or LinkedIn.

• BFS can be used to find the shortest path between two locations

on a map as routing algorithms for navigation systems.

• BFS can be used in AI applications, such as pathfinding and

decision-making.

4

Sequential BFS Algorithm
BreadthFirstSearch(G, A): // G is a graph and A is the source node

Q = Queue() // Create an empty queue

Q.enqueue(A) // Enqueue the source node A

visited = set() // Create an empty set of visited nodes

visited.add(A) // Mark A as visited

while not Q.isEmpty(): // While the queue is not empty

B = Q.dequeue() // Dequeue the next node B from the queue

for C in G.neighbors(B): // Process all the neighbors of B

if C not in visited: // If C is not visited

Q.enqueue(C) // Enqueue C

visited.add(C) // Mark C as visited

Parallel BFS Algorithm

Source: https://en.wikipedia.org/wiki/Parallel_breadth-first_search

Communication

Parallel BFS Implementation

• Creating the data offset and sending it to all processors.

Parallel BFS Implementation

• Pop and push operations on FS and NS for all processors.

Parallel BFS Implementation

• Merging the received data and sending the updated data to all processors

Sample Output

Slurm Script

Execution time VS No. of
vertices with constant 8 PE

0

2

4

6

8

10

12

14

16

18

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768

E
x
e
c
u
ti
o
n
 t

im
e

Number of vertices

Execution time serial Execution time parallel with 8 PE

0.00001

0.0001

0.001

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048 4096 8192 1638432768

E
x
e
c
u
ti
o
n
 t

im
e

Number of vertices

Execution time serial Execution time parallel with 8 PE

Logarithmic graph

No of vertices

Execution time

serial

Execution time parallel

w 8 PE

8 0.000049 0.001647

16 0.000051 0.004066

32 0.000061 0.001355

64 0.000152 0.001477

128 0.000483 0.001041

256 0.001925 0.001688

512 0.007164 0.005234

1024 0.027783 0.012878

2048 0.071938 0.03344

4096 0.26456 0.120046

8192 1.038307 0.462638

16384 4.149131 1.825428

32768 16.324268 6.438635

Execution time VS No. of processors

14

• The Execution time reduces

linearly with increase in the

number of processors

• The decrease in execution

time gets more signification

in more vertices

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8 16 32 64 128

E
x
e
c
u
ti
o
n
 t

im
e

Number of Processors with 1 task per node

4000 vertices 8000 vertices 16000 vertices

1 task per node

No of Processors 4000 vertices 8000 vertices 16000 vertices

1 0.1963 0.7855 3.1379

2 0.1513 0.6113 2.4469

4 0.0830 0.3272 1.3138

8 0.0650 0.3235 1.1504

16 0.0883 0.3146 1.0477

32 0.1482 0.3023 0.8340

64 0.2119 0.3136 0.7888

128 0.3081 0.4961 0.9360

Execution time VS No. of processors

15
8 task per node

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8 16 32 64 128

E
x
e
c
u
ti
o
n
 t

im
e

Number of Processors with 8 tasks per node

4000 vertices 8000 vertices 16000 vertices

No of Processors 4000 vertices 8000 vertices 16000 vertices

8 0.0831 0.3301 1.2770

16 0.0647 0.2643 1.1593

32 0.0733 0.2440 1.0018

64 0.2130 0.3789 1.0333

128 0.3319 0.5918 1.3178

• The experiment shows a distinct

increase in the execution time as

the number of processors

exceeds 32.

Speedup VS No. of processors

Speed up = Tserial/ TParallel

• For smaller number of graph there isn’t

much improvement in the speedup

• As we increase the number of vertices

the speedup increases with processors

• After one point the trend starts going

down even for large number of vertices.

• Likely because of the parallel

communication overhead

0.000000

0.500000

1.000000

1.500000

2.000000

2.500000

3.000000

3.500000

4.000000

4.500000

5.000000

1 2 4 8 16 32 64 128

S
p
e
e
d
 U

p

Number of Processors

speedup for 4000 speedup for 8000 speedup for 16000

No of Processors speedup for 4000 speedup for 8000 speedup for 16000

1 0.3114 0.9461 0.8867

2 0.3976 1.2157 1.1397

4 0.7099 2.1888 2.0592

8 1.0136 3.1585 3.0337

16 1.2496 3.9910 3.7524

32 1.4026 4.5546 4.2779

64 0.6290 4.0648 4.5996

128 0.3900 2.6419 3.3467

Bar graph comparison for all three types of execution

17

0.00001

0.0001

0.001

0.01

0.1

1

10

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768

E
x
e
c
u
ti
o
n

 t
im

e

Number of vertices

Serial Parallel w 16 PE Parallel w 32 PE

Logarithmic Bar Graph

Conclusion

• As can be interpreted form the graphs that the algorithm for parallel BFS is working

effectively.

• The trends in the graphs reflect that parallelizing the process make it more efficient in

terms of execution time but only up to a certain number of processors.

• For the input size of around 30K vertices, making the adjacency matrix size (30K * 30k),

we can see the algorithm works effectively until 32 processors. From there we can

observe the increase in the execution time with increase in processors due to

communication over head.

18

References

19

• https://en.wikipedia.org/wiki/Parallel_breadth-first_search

• https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf

• https://medium.com/geekculture/configuring-mpi-on-windows-10-and-executing-the-hello-

world-program-in-visual-studio-code-2019-879776f6493f

• https://docs.ccr.buffalo.edu/en/latest/hpc/data-transfer/#data-transfer

• https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather

https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://medium.com/geekculture/configuring-mpi-on-windows-10-and-executing-the-hello-world-program-in-visual-studio-code-2019-879776f6493f
https://medium.com/geekculture/configuring-mpi-on-windows-10-and-executing-the-hello-world-program-in-visual-studio-code-2019-879776f6493f
https://medium.com/geekculture/configuring-mpi-on-windows-10-and-executing-the-hello-world-program-in-visual-studio-code-2019-879776f6493f
https://docs.ccr.buffalo.edu/en/latest/hpc/data-transfer/#data-transfer
https://mpitutorial.com/tutorials/mpi-scatter-gather-and-allgather

20

Thank You

	Slide 1: Parallel Breadth-first search using mpi
	Slide 2
	Slide 3: Breadth-First Search
	Slide 4: Applications of BFS
	Slide 5: Sequential BFS Algorithm
	Slide 6: Parallel BFS Algorithm
	Slide 7: Communication
	Slide 8: Parallel BFS Implementation
	Slide 9: Parallel BFS Implementation
	Slide 10: Parallel BFS Implementation
	Slide 11: Sample Output
	Slide 12: Slurm Script
	Slide 13: Execution time VS No. of vertices with constant 8 PE
	Slide 14: Execution time VS No. of processors
	Slide 15: Execution time VS No. of processors
	Slide 16: Speedup VS No. of processors
	Slide 17: Bar graph comparison for all three types of execution
	Slide 18: Conclusion
	Slide 19: References
	Slide 20

