
Parallel Algorithms K – means

Clustering

Final Results

By: Andreina Uzcategui

CSE 633: Parallel Algorithms

Spring 2014

Outline

The problem

Algorithm Description

Parallel Algorithm Implementation(MPI)

Test Cases

Results

The Problem

K-means Clustering

Dividing a large vector filled of points into smaller groups which

are organized according to a centroid point, each group must

have almost the same number of components.

Centroids (k)

Algorithm Description

K – means clustering

It has by objective to partition n elements into k

clusters.

The partition is made grouping the observed

elements according to it proximity with one of the k

elements using as centroids.

The distance between a centroid (k) and a point is

calculated by:

- Euclidean Distance Metric:
Point – K = |Distance| (Absolute value result)

Parallel Algorithm Implementation

(MPI)

In order to make the k – means clustering problem

parallel, the following steps will be implemented:

Data organization

1- P processors, each will contain nxTn data values

(points) randomly assigned.

2- Three k values (centroids) will be used in each

iteration to determinate the clusters.

T1 Tn…

P1 … Pn

Parallel Algorithm Implementation

(MPI)

Algorithm

Iterative algorithm

1- For the first iteration 3 k values (centroids) will be

determinate randomly.

2- Each PE in parallel will calculate the clusters

associated to each k using the Euclidean Distance

Metric.

Parallel Algorithm Implementation

(MPI)

3- Each PE in parallel will calculate the median value

of each of its cluster.

- Media:

1- Determinate a frequency table containing

each point in the cluster frequency.

2- Calculate the media position according to

the frequency table and hence the median value will

be obtained.

Parallel Algorithm Implementation

(MPI)

4- Each PE will broadcast its medians for each

cluster to all other PEs.

5- In parallel each PE will determinate a new median

for each cluster using the received data and its just

calculated median.

6- Each PE will check for each cluster the different

between the new calculated median and it previous

calculated median.

Parallel Algorithm Implementation

(MPI)

Final Conditions

- When the different between old and new median (error

value) is minimal or zero the iteration process stops

under normal considerations.

- For simplicity of the algorithm, in this case the number

of iterations made was predetermined to avoid infinite

iterations (10 itarations).

- For each iteration (except first one) the K values will

be the closest medians to 0 determinate in previous

iteration.

Test Cases & Conclusions

1- Same centroids, different data, same # processors,

same # tasks.

2- Same centroids, same data, different # processors.

3- Same centroids, same data, different # tasks.

4- Different centroids, different data, different #

processors.

5- Different centroids, different data, different # tasks.

6- Same data, different # processors.

Test Case 1: Same centroids, different data, same # processors, same

tasks.

K d P T Time

3 100 2 8 0.13

3 1000 2 8 0.28

3 2000 2 8 0.35

3 5000 2 8 0.80

3 9000 2 8 3.03

Conclusion

The processing time

dramatically increase.

K = # centroids

d = # data

P = # processor

T = # tasks

Test Case 2: Same centroids, same data, different # processors.

K d P Time.sec

3 100 2 0.13

3 100 4 0.14

3 100 8 0.29

3 100 16 0.43

Conclusion

The processing time slowly

increase.

Conclusion

The processing time

K = # centroids

d = # data

P = # processor

Test Case 3: Same centroids, same data, different # tasks.

K d T Time

3 100 2 0.05

3 100 4 0.06

3 100 8 0.13

3 100 16 0.24

Conclusion

The processing time slowly

increase.

Conclusion

The processing time

K = # centroids

d = # data

T = # tasks

Test Case 4: Different centroids, different data, different # processors.

K d P Time

3 100 2 0.1

6 1000 4 0.35

12 5000 8 25.54

Conclusion

The processing time

dramatically increase.

K = # centroids

d = # data

P = # processor

Test Case 5: Different centroids, different data, different # tasks.

K d T Time

3 100 2 0.05

6 1000 4 0.12

12 5000 8 4.95

Conclusion

The processing time

dramatically increase.

K = # centroids

d = # data

T = # tasks

Test Case 6: Same data, different # processors.

P time, sec

2 0.85

4 0.18

8 0.07

16 0.05

32 0.06

Conclusion

The processing time slowly

decrease until the #

processors is to high and

the data per P is too low.

Total data, N = 12288, is

divided by an increasing P

in every stage

Questions?

