
‘-

1



‘-

2

❏

❏

❏

❏

❏

❏

❏

❏

❏



‘-

3

❏

❏

❏



‘-

4

❏

≤ −

❏

❏



‘-

5

Given a matrix A(N ×N) and a matrix B(N × N), 

the matrix C(N x N) resulting from the 

multiplication of matrices A and B, C = A × B is 

computed as Follows.

Problem Definition - Matrix Multiplication

Note: To Compute One Value in C matrix,  
we have to peform N multiplications and 
(N-1) additions. Thus to compute the N^2  
values in C Matrix, we have to peform 
O(N^3) operations.



‘-

6

for (i = 0; i < n; i++)

for (j = 0; i < n; j++)

c[i][j] = 0;

for (k = 0; k < n; k++)

c[i][j] += a[i][k] * b[k][j] end for

end for end for



‘-

7

No of 
Processors

Matrix 
Dimension

Running 
Time(s)

1 100 X 100 3.36

1 200 x 200 30.49

1 300 x 300 102.11

1 400 x 400 228.93

1 500 x 500 440.95

1 600 x 600 833.29

1 700 x 700 1216.29

1 800 x 800 1839.21

1 900 x 900 2591.42

1 1000 x 1000 3612.70



‘-

8

Block Striped Matrix Decomposition - A Parallel Approach
1. Divide A_matrix along its Rows as per Number of Processors
2. Divide B_matrix along its Columns as per Number of Processors
3. All Processors in Parallel loads A[rank] and B[rank]
4. For i in (rank,N):

C[rank,i] = A_matrix[rank] *B_matrix[i]
send(rank,B_matrix[i])
B_matrix[i] = receive(rank)

  5. For i in(0, rank):
C[rank,i] = A_matrix[rank] *B_matrix[i]
send(rank,B_matrix[i])
B_matrix[i] = receive(rank)

  6.  Write the Results of C 

def send(rank,B):
if rank==0 : send(B,send = N-1, tag= N-1)
else: send(B,send = rank-1, tag= rank-1)

def receive(rank):
if rank==N-1: 

B_matrix = receive(source=0,tag = rank)
else:

B_matrix = receive(source=rank+1,tag = rank)

Note: This is a cyclic operation,
even though there are two loops 
the Number of iterations is only N. 
This will become more clear with 
the pictorial representation. Here N 
is the number of Processors.



‘-

9

At Every step, each of the 
four processors compute the 
next block of C in their row 
in a cyclic fashion .To 
produce C, as depicted in 
the following slide.



‘-

10

At Every step, each of the four 
processors compute the next 
block of C in their row in a 
cyclic fashion . The Number 
of steps = No of Processors.



‘-

11

Parallel Approach (100 x 100 Data Items/ Processor)

No of 
Processors

Matrix Size Running Time(s)

1 100 x 100 3.36

4 200 x 200 4.58

16 400 x 400 13.65

64 832 x 832 30.77

256 1792 x 1792 65.34



‘-

12

Scaled Speed-up Achieved (100 x 100 Data Items/ Processor)

No of 
Processors 

Speed-up Achieved

1 1

4 6.65

16 16.77

64 59.77



‘-

13

Parallel Approach (200 x 200 Data Items/ Processor)

No of 
Processors

Matrix Size Running Time(s)

1 200 x 200 30.49

4 400 x 400 38.99

16 800 x 800 75.01

64 1600 x 1600 143.56

256 3328 x 3328 336.87



‘-

14

Parallel Approach (400 x 400 Data Items/ Processor)

No of 
Processors

Matrix Size Running Time(s)

1 400 x 400 228.93

4 800 x 800 444.03

16 1600 x 1600 973.56

64 3200 x 3200 1823.54

256 6400 x 6400 2574.67



‘-

15

Parallel Approach (800 x 800 Data Items/ Processor)

No of 
Processors

Matrix Size Running Time(s)

1 800 x 800 1839.21

4 1600 x 1600 2481.57

16 3200 x 3200 4802.58

64 6400 x 6400 9919.36



‘-

16

Speed up Factor while keeping Data Fixed (800 x 800)

No of 
Processo
rs

Matrix Size Running 
Time(s)

Speed up 
Factor

1 800 x 800 1839.21 1

2 800 x 800 586.26 3.138

4 800 x 800 288.48 6.37

8 800 x 800 157.72 11.66

16 800 x 800 72.93 25.21

32 800 x 800 40.35 45.58

64 832 x 832 30.77 59.77

256 768 x 768 5.846 314.60 Note: This is not very different
from the scaled speed up Factor, 
which means that we need to 
re-evaluate Amdahl’s law.



‘-

17

Quadrupling Data While Doubling No of Processors

No of 
Processors

Matrix Size Running 
Time(s)

1 100 x 100 3.36

2 200 x 200 13.27

3 300 x 300 32.02

4 400 x 400 38.99

5 500 x 500 63.10

6 600 x 600 86.45

7 700 x 700 110.184

8 800 x 800 157.72

No of 
Processors

Matrix Size Running 
Time(s)

9 900 x 900 181.445

10 1000 x 1000 228.20

16 1600 x 1600 973.56

24 2400 x 2400 2285.12

32 3200 x 3200 3646.03

64 6400 x 6400 9919.36

100 10000 x 10000 23163.69



‘-

18

Reevaluation of  Amdahl's Law 
❏ Amdahl’s Law overlooks the fact that for many algorithms, the 

percentage of required sequential operations decreases as the 
size of the problem increases and hence the speed up achieved 
will also increase with the size of the problem.

❏ However, this is not applicable for all problems. For problems such 
as Matrix multiplication, as the size of problem increases larger 
volume have data have to be communicated among processors 
and will affect the speed up factor after a point.

❏ To solve Matrix multiplication more effectively we need to come up 
with a better algorithm as well a better communication system 
among processors.



‘-

19

❏

❏

❏

❏



‘-

20

neque dignissm, 
and in aliquet nisl 

et umis varius.



‘-

21


