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What is a Convex Polygon? 

Convex Not Convex 

If you can draw a straight line from one point in the 
polygon to another and have the line exit the polygon, it 
is not convex. 
If an external angel < 180 degrees, it is not convex. 
If an internal angel > 180 degrees, it is not convex. 



What is a Convex Hull? 

The convex hull of a set of points S is the smallest convex 
polygon that contains all of the points in S. 

Imagine the points are nails in a board. To get the 
convex hull, you would just need to take a string and 
wrap it around the outside of the set of points! 

Extreme Points: points on the 
polygon – can be used to describe 
the convex hull 



Importance of Convex Hull 

• Used heavily in image processing, operations 
research, molecular biology, layout and design, 
and many others. 

 

• Many points of data => lots of computation => 
lets parallelize the solution! 



The Problem 

• Input: An set of N points ordered by x-coordinate. 
• (X,Y) coordinates – randomly generated a few sets of data; X & Y I 

used were double values 

 

• Output: An ordered set of Extreme Points that represent 
the convex hull. 
• List of (X,Y) coordinates – if you draw straight lines between the 

points in order, you will have the convex hull 



Graham’s Scan  

• 1. Select the lowest point in S as point 0, and as the origin 
(break ties with the leftmost point).  

• 2. Sort the n-1 remaining points of S by angle in [0,𝜋) with 
respect to the origin point. If two points have the same angle, 
take the furthest from the origin point. 

• 3. For points 1 to n-1, consider the current point 
• Add the point to the set of extreme points 

• If a right turn was introduced into the ordered set of extreme points, 
remove preceding items from the set of extreme points until there 
are no more right turns 

 

• 𝜃(𝑛 log 𝑛)  − dominated by sort 



Graham’s Scan 

Point 0 



Algorithm on a Mesh of size n 

• Input: n points distributed 1 point per processor 

 

• 1. Sort the points by x-coordinate in shuffled row major 
ordering across the mesh 
• since every processor has 1 element, we cannot divide further and must 

begin stitching the ‘hulls’ together 

• 2. Recursively stitch together the hulls 

• Perform a binary search on adjacent hulls to find the upper and 
lower common tangent lines  

• Eliminate the log(n) factor from the binary search by using a dual 
binary search with compression  



Alteration Plan 

• Coarse Grain (More than 1 point per processor – less than n 
processors) 

• Pre-sorted input to avoid unneeded complication 

• Only include Dual Binary Search with Compression if time 
allows (P.S. time did not allow) 

• Change from mesh to hypercube since mesh is more 
complicated and gives little benefit using the coarse grained 
cluster 



My Algorithm (high level) 

• Input: n/p points per processor in order of x coordinates 

• 1. Sequentially find your local convex hull 

• 2. Recursively Stitch together hulls 

 

 Node0 Node3 Node2 Node1 
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Common Tangent Lines 
When stitching two hulls together, you must find the upper and 
lower common tangent lines, then eliminate any points in the 
quadrilateral formed by the two lines  



Common Tangent Lines 
You can find the points of the common tangent lines by finding a point 
where: 
•  The line between 𝑝𝐿 and 𝑝𝑇 touches or goes above each points in the 

opposing hull 
• And the line between 𝑝𝑇 and 𝑝𝑅 touches or goes below a point in the 

opposing hull 

𝑝𝐿 

𝑝𝑇 

𝑝𝑅 



Dual Binary Search with 
Compression 
Preform a search for common tangent lines between the two convex hulls by 
doing simultaneous binary searches, and reducing the remaining possibilities on 
both sides at each step and continue searching through those. 
 
- You are doing a binary search on one hull, but also halving the point set that 

needs to be checked by the other at every step 
- Converges to a 𝜃(𝑛) time operation (proof using a geometric series) 



My Algorithm (low level) 

• Input: n points sorted by x-coordinate distributed roughly n/p 
points per processor 

• 1. Run Graham’s Scan on your coordinates   θ(𝑛 log (𝑛)) 

• 2. For each bit in the rank ( recursive halving)    θ(log (𝑝)) 

• Send your local hull to your neighbor     θ(ℎ = ℎ𝑢𝑙𝑙 𝑠𝑖𝑧𝑒) 

• OR Recv your neighbor’s hull from your neighbor 

• If you Recv’d a hull from your neighbor   θ(ℎ log (ℎ)) 

• Perform a binary search on both hulls to find the upper and lower 
common tangent lines 

• Eliminate the points in the quadrilateral formed by the common 
tangent lines’ start and end points 

 

Note: We can eliminate the log(h) factor from the binary search by 
using a dual binary search with compression 

 



Old Plan & Runtime Analysis 

Node1 Node2 

Node3 Node4 

I want to stop when each node to be left with approximately 
𝑛

log (𝑛)
.  Each 

node can then run the RAM algorithm ( 𝜃(𝑛 log 𝑛) ) on this data to receive a 
local convex hull in 𝑂 𝑛  time. The whole solutions thus stays 𝜃 𝑛 . If I 
do not implement the dual binary search with compression, there would be 
an extra log n factor in the solution and thus I could stop when each node is 
left with approximately 𝑛 and not worry about eliminating the log n factor 
from the RAM algorithm. 



Reality – Runtime Analysis 

• Rough running time is 𝜃(
𝑛

𝑝
log

𝑛

𝑝
+ log (𝑝)ℎ log(ℎ) )   

• 𝑝 = # of processors, ℎ = max(size of local hulls), 𝑛 = # of points 

• Running time is 𝜃(𝑛) or 𝜃(𝑛 log 𝑛) for the worst case (when 
the convex hull itself is 𝜃(𝑛) ) 

• Doing a binary search for tangent lines between two 𝜃(𝑛) size 
hulls. Could be eliminated by doing a dual binary search w/ 
compression.  

• Average case MUCH better. 



Testing Details 

• 2 Core Machines – only using 1 core on each to enforce 
network traffic after 1 node 

• Stored input data in parallel storage ( /panasas/scratch ) 

• Ran on 1, 2, 4, 8, 16, 32, 64 processors 

 



Testing Data 

• Data generator for creating a given number of random points 
within a given rectangle or circle. 

• Can create multiple sets with the same bounds in one run 

• Generated 10 sets each of 100k, 200k, 400k, and 800k random 
points bounded by a circle with a radius of 1 million 

• Chopped the data up into 64 files so all processors could 
access the data independently 

• Used the same sets of random data for all the different 
numbers of processes 

• Hulls ended up being between 100-200 points 



100k 200k 400k 800k

1 Proc 13916.3 29507.2 62365.2 131150.4

2 Proc 6752.2 14130.3 29841.5 63171.4

4 Proc 3943.7 8064.0 16276.0 34152.3

8 Proc 2319.2 4042.4 8192.1 16624.4

16 Proc 1407.2 2283.3 4180.0 8162.3

32 Proc 2405.3 3177.6 5058.6 6940.7

64 Proc 2988.2 3153.3 3756.8 6016.6
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100k 200k 400k 800k

1 Proc 1.000 1.000 1.000 1.000

2 Proc 2.061 2.088 2.090 2.076

4 Proc 3.529 3.659 3.832 3.840

8 Proc 6.000 7.299 7.613 7.889

16 Proc 9.889 12.923 14.920 16.068

32 Proc 5.786 9.286 12.329 18.896

64 Proc 4.657 9.357 16.601 21.798
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Data Set Size 

Speedup 
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100k 200k 400k 800k

1 Proc 1.000 1.000 1.000 1.000

2 Proc 1.031 1.044 1.045 1.038

4 Proc 0.882 0.915 0.958 0.960

8 Proc 0.750 0.912 0.952 0.986

16 Proc 0.618 0.808 0.932 1.004

32 Proc 0.181 0.290 0.385 0.590

64 Proc 0.073 0.146 0.259 0.341
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Data Set Size 

Efficiency 
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100k 200k 400k 800k

1Proc 13564.6 28855.8 61254.7 127599.7

2Proc 6696.7 14022.1 29629.8 62749.7

4Proc 3465.1 7545.7 15654.5 33388.5

8Proc 1691.9 3495.7 7519.4 16015.4

16Proc 879.8 1748.3 3646.0 7597.5

32Proc 924.9 1660.9 3452.1 5791.7

64Proc 392.8 805.7 1652.4 3474.9
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Data Set Size 

Sequential Runtime 
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100k 200k 400k 800k

1 Proc 1.000 1.000 1.000 1.000

2 Proc 2.025 2.058 2.067 2.033

4 Proc 3.914 3.824 3.913 3.821

8 Proc 8.012 8.251 8.144 7.966

16 Proc 15.391 16.489 16.790 16.789

32 Proc 14.121 17.275 17.642 21.963

64 Proc 32.828 35.327 36.500 36.444
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Data Set Size 

Speedup Excluding Reading Input Files 
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Super-Linear Speedup 

• Could be due to 
𝑛

𝑝
log

𝑛

𝑝
 being the dominant factor in the 

runtime on my data sets since, 
𝑛

2
log

𝑛

2
 < 

1

2
 * 𝑛 log 𝑛  for 

large enough n 

• Assume log base 2 for the following: 

• Ex. 
8

2
log

8

2
 = 4 log 4  = 4 * 2 = 8 

•
1

2
∗

8

1
log

8

1
 = 4 log 8  = 4 * 4 = 16 

• So the running time for 2 processors can be less than half of 
the running time on 1 processor, which would give the super-
linear speedup we see. 

• Note: this is only for the data sets that I chose, since the 
parallel time component of them is negligible, i.e. their stitch 
steps involve little data 



Thoughts 

• Reading input took more time when there were more 
processors reading less data, also varied a lot 

• Because of network and parallel storage resources allocated to 
my nodes? 

• Because of my jobs fighting with each other to access the files? 

• Because of physical limitations of the hard drive(s) where the files 
were stored? 

• Total parallel stitching runtime never took more than 50 ms 

• Times are only recorded on the first processor since the first 
processor will hold the answer at the end 

• Few anomalies could be due to lack of runs on the same 
datasets, lack of datasets, or how the datasets distributed 
their workload (since there is a barrier in the code) 



Limitations 

• Memory needs to be able to hold all points on one node 

• Stitch only guaranteed to work on actual convex hulls (3 or 
more points) 

• Integer indexing on the structures that hold the points 
(input/hull size must be less than MAX_INT) 

• Function that says whether a point is above or below a line 
can’t take too big of values 



Moving Forward 

• Implement Dual Binary Search 

• OpenMP – This algorithm or a PRAM algorithm which applies 
more to the shared memory model 

• Optimize implementation 

• Remove the limitations 

• Try running the algorithm on a large circle (just the 
circumference, instead of points contained within a circle) 
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