
Parallel Convex Hull
using MPI

CSE633 Fall 2012

Alex Vertlieb

What is a Convex Polygon?

Convex Not Convex

If you can draw a straight line from one point in the
polygon to another and have the line exit the polygon, it
is not convex.
If an external angel < 180 degrees, it is not convex.
If an internal angel > 180 degrees, it is not convex.

What is a Convex Hull?

The convex hull of a set of points S is the smallest convex
polygon that contains all of the points in S.

Imagine the points are nails in a board. To get the
convex hull, you would just need to take a string and
wrap it around the outside of the set of points!

Extreme Points: points on the
polygon – can be used to describe
the convex hull

Importance of Convex Hull

• Used heavily in image processing, operations
research, molecular biology, layout and design,
and many others.

• Many points of data => lots of computation =>
lets parallelize the solution!

The Problem

• Input: An set of N points ordered by x-coordinate.
• (X,Y) coordinates – randomly generated a few sets of data; X & Y I

used were double values

• Output: An ordered set of Extreme Points that represent
the convex hull.
• List of (X,Y) coordinates – if you draw straight lines between the

points in order, you will have the convex hull

Graham’s Scan

• 1. Select the lowest point in S as point 0, and as the origin
(break ties with the leftmost point).

• 2. Sort the n-1 remaining points of S by angle in [0,𝜋) with
respect to the origin point. If two points have the same angle,
take the furthest from the origin point.

• 3. For points 1 to n-1, consider the current point
• Add the point to the set of extreme points

• If a right turn was introduced into the ordered set of extreme points,
remove preceding items from the set of extreme points until there
are no more right turns

• 𝜃(𝑛 log 𝑛) − dominated by sort

Graham’s Scan

Point 0

Algorithm on a Mesh of size n

• Input: n points distributed 1 point per processor

• 1. Sort the points by x-coordinate in shuffled row major
ordering across the mesh
• since every processor has 1 element, we cannot divide further and must

begin stitching the ‘hulls’ together

• 2. Recursively stitch together the hulls

• Perform a binary search on adjacent hulls to find the upper and
lower common tangent lines

• Eliminate the log(n) factor from the binary search by using a dual
binary search with compression

Alteration Plan

• Coarse Grain (More than 1 point per processor – less than n
processors)

• Pre-sorted input to avoid unneeded complication

• Only include Dual Binary Search with Compression if time
allows (P.S. time did not allow)

• Change from mesh to hypercube since mesh is more
complicated and gives little benefit using the coarse grained
cluster

My Algorithm (high level)

• Input: n/p points per processor in order of x coordinates

• 1. Sequentially find your local convex hull

• 2. Recursively Stitch together hulls

 Node0 Node3 Node2 Node1

Visualization

Node0 Node1 Node2 Node3

Node0

Node0 Node2

Stitch

Stitch Stitch

Scan Scan Scan Scan

MPI MPI

MPI

Memory Memory

Memory

Common Tangent Lines
When stitching two hulls together, you must find the upper and
lower common tangent lines, then eliminate any points in the
quadrilateral formed by the two lines

Common Tangent Lines
You can find the points of the common tangent lines by finding a point
where:
• The line between 𝑝𝐿 and 𝑝𝑇 touches or goes above each points in the

opposing hull
• And the line between 𝑝𝑇 and 𝑝𝑅 touches or goes below a point in the

opposing hull

𝑝𝐿

𝑝𝑇

𝑝𝑅

Dual Binary Search with
Compression
Preform a search for common tangent lines between the two convex hulls by
doing simultaneous binary searches, and reducing the remaining possibilities on
both sides at each step and continue searching through those.

- You are doing a binary search on one hull, but also halving the point set that

needs to be checked by the other at every step
- Converges to a 𝜃(𝑛) time operation (proof using a geometric series)

My Algorithm (low level)

• Input: n points sorted by x-coordinate distributed roughly n/p
points per processor

• 1. Run Graham’s Scan on your coordinates θ(𝑛 log (𝑛))

• 2. For each bit in the rank ( recursive halving) θ(log (𝑝))

• Send your local hull to your neighbor θ(ℎ = ℎ𝑢𝑙𝑙 𝑠𝑖𝑧𝑒)

• OR Recv your neighbor’s hull from your neighbor

• If you Recv’d a hull from your neighbor θ(ℎ log (ℎ))

• Perform a binary search on both hulls to find the upper and lower
common tangent lines

• Eliminate the points in the quadrilateral formed by the common
tangent lines’ start and end points

Note: We can eliminate the log(h) factor from the binary search by
using a dual binary search with compression

Old Plan & Runtime Analysis

Node1 Node2

Node3 Node4

I want to stop when each node to be left with approximately
𝑛

log (𝑛)
. Each

node can then run the RAM algorithm (𝜃(𝑛 log 𝑛)) on this data to receive a
local convex hull in 𝑂 𝑛 time. The whole solutions thus stays 𝜃 𝑛 . If I
do not implement the dual binary search with compression, there would be
an extra log n factor in the solution and thus I could stop when each node is
left with approximately 𝑛 and not worry about eliminating the log n factor
from the RAM algorithm.

Reality – Runtime Analysis

• Rough running time is 𝜃(
𝑛

𝑝
log

𝑛

𝑝
+ log (𝑝)ℎ log(ℎ))

• 𝑝 = # of processors, ℎ = max(size of local hulls), 𝑛 = # of points

• Running time is 𝜃(𝑛) or 𝜃(𝑛 log 𝑛) for the worst case (when
the convex hull itself is 𝜃(𝑛))

• Doing a binary search for tangent lines between two 𝜃(𝑛) size
hulls. Could be eliminated by doing a dual binary search w/
compression.

• Average case MUCH better.

Testing Details

• 2 Core Machines – only using 1 core on each to enforce
network traffic after 1 node

• Stored input data in parallel storage (/panasas/scratch)

• Ran on 1, 2, 4, 8, 16, 32, 64 processors

Testing Data

• Data generator for creating a given number of random points
within a given rectangle or circle.

• Can create multiple sets with the same bounds in one run

• Generated 10 sets each of 100k, 200k, 400k, and 800k random
points bounded by a circle with a radius of 1 million

• Chopped the data up into 64 files so all processors could
access the data independently

• Used the same sets of random data for all the different
numbers of processes

• Hulls ended up being between 100-200 points

100k 200k 400k 800k

1 Proc 13916.3 29507.2 62365.2 131150.4

2 Proc 6752.2 14130.3 29841.5 63171.4

4 Proc 3943.7 8064.0 16276.0 34152.3

8 Proc 2319.2 4042.4 8192.1 16624.4

16 Proc 1407.2 2283.3 4180.0 8162.3

32 Proc 2405.3 3177.6 5058.6 6940.7

64 Proc 2988.2 3153.3 3756.8 6016.6

13916.3

29507.2

62365.2

131150.4

6752.2

14130.3

29841.5

63171.4

3943.7

8064.0

16276.0

34152.3

2319.2

4042.4

8192.1

16624.4

1407.2

2283.3

4180.0

8162.3

2405.3

3177.6

5058.6

6940.7

2988.2 3153.3
3756.8

6016.6

1000.0

10000.0

100000.0

1000000.0

Ti
m

e
 (

m
s)

Data Set Size

Running Time

1 Proc

2 Proc

4 Proc

8 Proc

16 Proc

32 Proc

64 Proc

100k 200k 400k 800k

1 Proc 1.000 1.000 1.000 1.000

2 Proc 2.061 2.088 2.090 2.076

4 Proc 3.529 3.659 3.832 3.840

8 Proc 6.000 7.299 7.613 7.889

16 Proc 9.889 12.923 14.920 16.068

32 Proc 5.786 9.286 12.329 18.896

64 Proc 4.657 9.357 16.601 21.798

1.000 1.000 1.000 1.000

2.061 2.088 2.090 2.076

3.529 3.659 3.832 3.840

6.000

7.299 7.613 7.889

9.889

12.923

14.920

16.068

5.786

9.286

12.329

18.896

4.657

9.357

16.601

21.798

0.000

5.000

10.000

15.000

20.000

25.000

Sp
e

e
d

u
p

Data Set Size

Speedup

1 Proc

2 Proc

4 Proc

8 Proc

16 Proc

32 Proc

64 Proc

100k 200k 400k 800k

1 Proc 1.000 1.000 1.000 1.000

2 Proc 1.031 1.044 1.045 1.038

4 Proc 0.882 0.915 0.958 0.960

8 Proc 0.750 0.912 0.952 0.986

16 Proc 0.618 0.808 0.932 1.004

32 Proc 0.181 0.290 0.385 0.590

64 Proc 0.073 0.146 0.259 0.341

1.000 1.000 1.000 1.000
1.031 1.044 1.045 1.038

0.882
0.915

0.958 0.960

0.750

0.912
0.952

0.986

0.618

0.808

0.932

1.004

0.181

0.290

0.385

0.590

0.073

0.146

0.259

0.341

0.000

0.200

0.400

0.600

0.800

1.000

1.200

Ef
fi

ci
e

n
cy

Data Set Size

Efficiency

1 Proc

2 Proc

4 Proc

8 Proc

16 Proc

32 Proc

64 Proc

100k 200k 400k 800k

1Proc 13564.6 28855.8 61254.7 127599.7

2Proc 6696.7 14022.1 29629.8 62749.7

4Proc 3465.1 7545.7 15654.5 33388.5

8Proc 1691.9 3495.7 7519.4 16015.4

16Proc 879.8 1748.3 3646.0 7597.5

32Proc 924.9 1660.9 3452.1 5791.7

64Proc 392.8 805.7 1652.4 3474.9

13564.6

28855.8

61254.7

127599.7

6696.7

14022.1

29629.8

62749.7

3465.1
7545.7

15654.5

33388.5

1691.9 3495.7
7519.4

16015.4

879.8 1748.3 3646.0
7597.5

924.9 1660.9 3452.1
5791.7

392.8 805.7 1652.4 3474.9
0.0

20000.0

40000.0

60000.0

80000.0

100000.0

120000.0

140000.0

Ti
m

e
 (

m
s)

Data Set Size

Sequential Runtime

1Proc

2Proc

4Proc

8Proc

16Proc

32Proc

64Proc

100k 200k 400k 800k

1 Proc 1.000 1.000 1.000 1.000

2 Proc 2.025 2.058 2.067 2.033

4 Proc 3.914 3.824 3.913 3.821

8 Proc 8.012 8.251 8.144 7.966

16 Proc 15.391 16.489 16.790 16.789

32 Proc 14.121 17.275 17.642 21.963

64 Proc 32.828 35.327 36.500 36.444

1.000 1.000 1.000 1.000
2.025 2.058 2.067 2.033

3.914 3.824 3.913 3.821

8.012 8.251 8.144 7.966

15.391
16.489 16.790 16.789

14.121

17.275 17.642

21.963

32.828

35.327
36.500 36.444

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

Sp
e

e
d

u
p

Data Set Size

Speedup Excluding Reading Input Files

1 Proc

2 Proc

4 Proc

8 Proc

16 Proc

32 Proc

64 Proc

Super-Linear Speedup

• Could be due to
𝑛

𝑝
log

𝑛

𝑝
 being the dominant factor in the

runtime on my data sets since,
𝑛

2
log

𝑛

2
 <

1

2
 * 𝑛 log 𝑛 for

large enough n

• Assume log base 2 for the following:

• Ex.
8

2
log

8

2
 = 4 log 4 = 4 * 2 = 8

•
1

2
∗

8

1
log

8

1
 = 4 log 8 = 4 * 4 = 16

• So the running time for 2 processors can be less than half of
the running time on 1 processor, which would give the super-
linear speedup we see.

• Note: this is only for the data sets that I chose, since the
parallel time component of them is negligible, i.e. their stitch
steps involve little data

Thoughts

• Reading input took more time when there were more
processors reading less data, also varied a lot

• Because of network and parallel storage resources allocated to
my nodes?

• Because of my jobs fighting with each other to access the files?

• Because of physical limitations of the hard drive(s) where the files
were stored?

• Total parallel stitching runtime never took more than 50 ms

• Times are only recorded on the first processor since the first
processor will hold the answer at the end

• Few anomalies could be due to lack of runs on the same
datasets, lack of datasets, or how the datasets distributed
their workload (since there is a barrier in the code)

Limitations

• Memory needs to be able to hold all points on one node

• Stitch only guaranteed to work on actual convex hulls (3 or
more points)

• Integer indexing on the structures that hold the points
(input/hull size must be less than MAX_INT)

• Function that says whether a point is above or below a line
can’t take too big of values

Moving Forward

• Implement Dual Binary Search

• OpenMP – This algorithm or a PRAM algorithm which applies
more to the shared memory model

• Optimize implementation

• Remove the limitations

• Try running the algorithm on a large circle (just the
circumference, instead of points contained within a circle)

References

• Miller, Russ, and Laurence Boxer. Algorithms, sequential &
parallel: A unified approach. 2nd ed. 2005.

