MPI Parallel Connected Component Counting on Overlap Graphs and ER Graphs

Vicky Zheng
Dr. Russ Miller
CSE 633

How to calculate number of connected components

- Kumar, S., S. Goddard, and J. Prins. Connected components algorithms for mesh-connected parallel computers. AMS, 1997.

First Iteration

Initial Forest

Algorithm

FOREACH vertex u IN G
$P(u):=\min \{u, \min \{v \mid$ vertex v is adjacent to u in G$\}\}$
REPEAT
FOREACH vertex u IN G /* Opportunistic Pointer Jumping */
$\operatorname{OldP}(u):=P(u)$
$P^{\prime}(u):=P(\min \{P(u), \min \{P(v) \mid$ vertex v is adjacent to vertex u in $G\}\})$
FOREACH vertex u IN G $\quad{ }^{*}$ Tree hanging */

$$
P(u):=\min \left\{P^{\prime}(u), \min \left\{P^{\prime}(v) \mid P(v)=u\right\}\right\}
$$

FOREACH vertex u IN G /* Normal Pointer Jumping */

$$
P(u):=P(P(u))
$$

UNTIL $P=O l d P$

$\begin{array}{lllll}0 & 1 & 7 & 3 & 6 \\ 2 & & 4 & 5 & \end{array}$

Initialization

	0	1	2	3	4	5	6	7
0	1	1	1					
1	1	1						
2	1		1					
3				1		1	1	1
4					1	1		
5				1	1	1		1
6				1			1	
7				1		1		1

Initialization
\longrightarrow

	0	1	2	3	4	5	6	7
0	0	0	0					
1	1	1						
2	2		2					
3				3		3	3	3
4					4	4		
5				5	5	5		5
6				6			6	
7				7		7		7

Initialization

	0	1	2	3	4	5	6	7
0	1	1	1					
1	1	1						
2	1		1					
3				1		1	1	1
4					1	1		
5				1	1	1		1
6				1			1	
7				1		1		1

Initialization

	0	1	2	3	4	5	6	7
0	0	0	0					
1	1	1						
2	2		2					
3				3		3	3	3
4					4	4		
5				5	5	5		5
6				6			6	
7				7		7		7

MPI_ALLreduce Column Wise MPI_MIN

	0	1	2	3	4	5	6	7
0	0	0	0					
1	0	0						
2	0		0					
3				3		3	3	3
4					4	3		
5				3	4	3		3
6				3			3	
7				3		3		3

Repeat until convergence

	0	1	2	3	4	5	6	7
0	0	0	0					
1	0	0						
2	0		0					
3				3		3	3	3
4					4	3		
5				3	4	3		3
6				3			3	
7				3		3		3

MPI_ALLreduce

$$
\begin{aligned}
& \text { Row - wise } \\
& \text { MPI_MIN }
\end{aligned}
$$

$$
\xrightarrow{\longrightarrow \text { MPI_ALLreduce }}
$$

$$
\begin{aligned}
& \text { MPl_ALLreduc } \\
& \text { Column Wise }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Column WI } \\
& \text { MPI_MIN }
\end{aligned}
$$

	0	1	2	3	4	5	6	7
0	0	0	0					
1	0	0						
2	0		0					
3				3		3	3	3
4					3	3		
5				3	3	3		3
6				3			3	
7				3		3		3

Data Set

- Overlap graph of four species: Bacteroides vulgatus, Klebsiella pneumoniae, Moraxella osloensis, Streptococcus suis
- I was suppose to have 20 species in total, but the other samples were low quality (this will be explained later).
- Due to a lack of data for overlap graphs, I began using Erdős-Rényi (ER) graphs where the parameters are number of nodes and edge probability

How DNA assembly is done (recap)

- Pick and extract a sample

How DNA assembly is done (recap)

- Isolate DNA and prepare for sequencing (this is done through wet lab)

How DNA assembly is done

- Put DNA through sequencer

How DNA assembly is done

- Perform base calling to extract nucleotides.

How DNA assembly is done

- Finally, you have your reads!

```
1 ब1246:3:1:1221:1945/1
2 NCCGECCGATCGCGACCGCTACGCCCGCGACCCGCTGTTCCAGGCCGCCGGCCGEGGGCGCGAGEGGCTGGCCCATTTCTTCGTGGCCGGGECCCCCCON
3 +
```



```
5 e1246:3:1:1221:1946/2
6 GGATCCGGCACCACGGCGCAGTCCGCGAAGACAGCACCCGTTCCTCGGCCCCCCCTNNNCCCGCCATONNNTGATCAAGAMCNNNNACCGGCTNWN
7 +
```



```
9 @1246:3:1:1152:1972/1
10 NCAGCGGACGTCGCGCTCAACGAGCACCTGCCCGAGCAACOGTTCCGTGCCGACCOCCACCGAATCGCCGACCACCACCACCGTCGCOGCCGCGCCACON
11 +
```



```
13 01246:3:1:1152:1972/2
```



```
15 +
```



```
17 @1246:3:1:1299:1945/1
18 NCCCGATTGCGGGATTTGTATTAGTGCCCGICGGACTAGCATCGGCAATCTGGTATTTGATAGCAGGTGATGCGACCTTGCCEGCGNACCACATCMATCA
```


After some data cleaning..

PNC-008614.1_267_aligned_3922_F_353_3443_1392
ACCACCACTATCCAAATTGCECCCATGTTACCATCTCATAAECCAAGTTECCGICCCCATCACECAATCCACECCACACTTGATCACEATTACACCTTACCTCCACATAACTCTTACT TCECTGЄACAACCECCCAACACCACAGATAGOGGGCCAGGGATCGGCTCGEGCECGCCTACTGEAGCACACATGACCTCCTCAATICCGGTCCTCAGAGTTGEAGAGTACCCAGGTC GCAAGATCACAACAGTAGCACCCGACAGCATTGCATATGTCGTCCATACGTGCAATCTCGESAECTTCCAECCTCCTGCCGGAACATACGARGTCACAGTAGTCACECAAGATACA CCAECCATATAACTGTTGGACGEGGGAGAMECAAGCCTCTTCAGACATGCCACATCAATGAGGTTATACGAGATGECAACAMEGCACCCEATCCAATGCAGGCCGECTCCGCAGGAT TTACACCATCATTTGAATCCAATTACCATTTTCAGAGTGTCATAGGTTCTCACGTCTACCAGAAACTGTACCTAAACATCCCGCAAAAACATTCAACCCTCTTCTGTTIGTATCCACC ATCCTGTGCECAMACTCACTTEACCAATEGTCTATTGGTACCCGAATCATTCAGEATTAATCCTEAMAMACAGTATTGTAGTACATCAGCACATCTEGTTCAGECAATACACTEA СTCTGTTCGTACCAATTCAATATGATTTCGTCTTAGTTCCTTATCAAACCATAGATTTTGATATTGATGAGATTCAAGAATTCGCCGCGTAACCTACCACCCACAACACATTCTTCC ACCTCTTTAACTCTCTECACCACAACEGTAAGCAACTTTACTTCTGACCGTGCEACCGTAACTECTAAGTTCCCAACAACECCTTCTEAAECGCTTTAAATGCAECCCTTAGTTGGCC GTTTATAMAGCCGCACGTAGANAAATCTAANGATATCTTACGTATAMATAGGTCGTGACGGTTTGATATACCGEATAACAGTANTAATTTTCTGAAACGTGCGTGAAT GAACGTCACCTACAGCECATCATTAATTTGTTCACTTTTEGCACAATGCATTATTTTCAAECCAGATGTCCATTTCCATTTGCCTGAAGACTTGTACCAAAACCTGTACECTTTGCG ATCGAGCGNAGCGIGTCACAGTAGMGATATCCTGGGTCAGAMCGTATECGCCATTAMAGCCGATCTGCCTTCCCAATCTACAMCAMENMAMGAGAAGTGTGCGTACAGTACGT САСGTACCTATTAAAGTCGCCAACAAATAAGCCTACTGCCTCTTCGTCACAAGTGGTAAATTAATACGTATAAACACATGCACCTATTCCACGCTTGCAAAGTAGTAAAAGACCAA GTAGACGTTCACAMACCTTTAAAECCCATATTEAECMATTGAAGCTTCTCTCAMAEGAAAAGATAANACCACATCGTTGCECAMACEECTGGTTTCTTTATTTCCCTCTECGCA
 TCAGTAATACCTCACCCAGTTTTCCTAATGATTTCTTTCAATAAACTCATEATTTCCGCAAGTGACTCTTTATATCTATAAATACTCTCAATATCCTGCATTAATGGTATACCT GATACAAGCTTCATGCAAHTACCCTCTATAGGATECGATCGACTTGTEGGGCATTCATCGGCGATATCCTACTGTAATAGAMGCACCGGCATAACAATTCCGGTCCCAACTGAMG TATATCAATEAATTTCATCACCATTATACTATCAGCAAATCGTTGTTTCCCGAAAAACAAATACCTAATCCATTTTCTCAGCCAATGTATCATACCTCTCAGCCACACCAGCAATCC ATCTCGTAGTAGCATTCAMAENAENAEGATTGTCTAACCCTGCACCECTTACGCTCTCTGCACCATTTACGTCAGAACGGTCAATTANAEECCACATAATAAEAGTACAACCG GACCACCTGTTGTCGTTGACCAGTGTTAAATGCCCATGCCAATCTCTCTTICAAATCTTGTCACGAGTCACAATCACACTATATAATTGCATATATACCCATTGTACAACCTICGACG GAACCCCTTTTCAAGCAAATCATTTAACAACAAGCAGAATATCTTCCTECTTATATTTACCCAGTCCGICTATTATTTATCCATTCCATATAGTATTTTTCTTGCAAGATANATA
 AGCAAAECATAATATATCTTTTCATAATCAATAAGTTAACAAATATCCTTECATAACTCAATTTGGTTGAATACATTACTCTGCTTTTTATTTTGTTAAATTGCAAAAACATATATAT CGCTTTGCCEAMATTATCTATTATATGAGTTGTAACTTCTACACTAMACTGTGTTGATTEATATTACACGTTAATATAAAATAATAAGGTGGNAGACAAACGTACACCTATEA CCAAGCTTTCGAACCATCTTTACATACTTCACAGGTGATCAACTTTGCTCCCAGACTTTCAAAGOTAAACAAATAGTGCCCTAAAACATTCTTTGCCAACATATACATAATGTGTCT CGCCCENAGATATECATTGECGCATTECANTENAGTAGCCCCCATTGANGCTAMATATANGACGEGTTAACGCACAECAGCTTTACEATTATTEGATCACTTTAATACATTGT

Given reads, we want to find which ones "overlap"

ATGCTAGCAGCATGCTAGCACGTAGATAGCATGCTAGCA

Given reads, we want to find which ones "overlap"

ATGCTAGCAGCATGCTAGCACGTAGATAGCATGCTAGCA

Given reads, we want to find which ones "overlap"

ACGTAGATAGCATGCTAGCAGCATGCTAGCA \longrightarrow GCATGCTAGCACGTAGATAGCATGCTAGCA
atGCtagCagCatgctagcacgtagatagcatgctagca

TGGATAAGATAGCATGCTAGCGATAGATCAAATGCTAGCAG

GCATGCTAGCAAGTACATGGATAAGATAGCATGCTAGCGATAG

Visualization of Overlap Graph

Runtime on overlap graph which has 10000 nodes

Runtime of Connected Components with 10000 Vertices

Runtime on single processor with increasing data size

Runtime of Connected Components with one processor and increasing graph size

Constant data size on multiple processors

Runtime of counting connected components on graph with 70560 vertices with increasing number of processors

Learning outcomes

- Different servers can give you dramatically different runtimes, so try to run all experiments on the same server
- Graph structure can also affect runtime due to different convergence times [3].
- Always use a seed when running experiments on random models
- Biological data can be a pain to work with

References

1. Kumar, S., S. Goddard, and J. Prins. Connected components algorithms for mesh-connected parallel computers. AMS, 1997.
2. Flick, Patrick, et al. "A parallel connectivity algorithm for de Bruijn graphs in metagenomic applications." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 2015.
3. Howe, Adina Chuang, et al. "Tackling soil diversity with the assembly of large, complex metagenomes." Proceedings of the National Academy of Sciences 111.13 (2014): 4904-4909.
4. JáJá, Joseph (1992). An Introduction to Parallel Algorithms. Addison Wesley.
5. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001) [1990]. Introduction to Algorithms (2nd ed.). MIT Press and McGrawHill.https://en.wikipedia.org/wiki/Pointer_jumping

Questions?

