MPI Parallel Connected Component Counting on Overlap Graphs and ER Graphs

Vicky Zheng Dr. Russ Miller CSE 633

How to calculate number of connected components

Kumar, S., S. Goddard, and J. Prins. Connected components algorithms for mesh-connected parallel computers. AMS, 1997.

Algorithm

FOREACH vertex u IN G $P(u) := \min\{u, \min\{v \mid vertex v \text{ is adjacent to } u \text{ in } G\}\}$ REPEAT FOREACH vertex u IN G /* Opportunistic Pointer Jumping */ OldP(u) := P(u) $P'(u) := P(\min\{P(u), \min\{P(v) \mid vertex v \text{ is adjacent to vertex } u \text{ in } G\}\})$ FOREACH vertex u IN G /* Tree hanging */ $P(u) := \min\{P'(u), \min\{P'(v) \mid P(v) = u\}\}$ FOREACH vertex u IN G /* Normal Pointer Jumping */ P(u) := P(P(u))UNTIL P = OldP

Initialization

0 1 7 3 6 2 4 5

Initialization

0	1	2	3	4	5	6	7	
1	1	1						
1	1							
1		1						Initiali
			1		1	1	1	
				1	1			
			1	1	1		1	
			1			1		
			1		1		1	
	1	1 1 1 1	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 I I 1 1 I I I 1 1 I I I 1 1 I I I 1 1 I I I 1 I I I I 1 I I I I I I I I I I I I I I	1 1 1 I	1 1 1 I

		0	1	2	3	4	5	6	7	
	0	0	0	0						
	1	1	1							
on	2	2		2						MPI_ALLreduce Column Wise MPI_MIN
•	3				3		3	3	3	
	4					4	4			
	5				5	5	5		5	
	6				6			6		
	7				7		7		7	

	0	0	0	0					
	1	0	0						
ce	2	0		0					
	3				3		3	3	3
	4					4	3		
	5				3	4	3		3
	6				3			3	
	7				3		3		3

Repeat until convergence

		0	1	2	3	4	5	6	7	
	0	0	0	0						
	1	0	0							
/	2	0		0						MPI_ALLreduce Row - wise MPI_MIN
	3				3		3	3	3	
	4					4	3			MPI_ALLreduce Column Wise
	5				3	4	3		3	
	6				3			3		
	7				3		3		3	

	0	1	2	3	4	5	6	7
0	0	0	0					
1	0	0						
2	0		0					
3				3		3	3	3
4					3	3		
5				3	3	3		3
6				3			3	
7				3		3		3

Data Set

- Overlap graph of four species: Bacteroides vulgatus, Klebsiella pneumoniae, Moraxella osloensis, Streptococcus suis
- I was suppose to have 20 species in total, but the other samples were low quality (this will be explained later).
- Due to a lack of data for overlap graphs, I began using Erdős–Rényi (ER) graphs where the parameters are number of nodes and edge probability

How DNA assembly is done (recap)

Pick and extract a sample

How DNA assembly is done (recap)

Isolate DNA and prepare for sequencing (this is done through wet lab)

How DNA assembly is done

Put DNA through sequencer

How DNA assembly is done

Perform base calling to extract nucleotides.

How DNA assembly is done

Finally, you have your reads!

After some data cleaning..

>NC-009614.1_267_aligned_3022_F_353_3443_1392

CAAATTGCGCCCATGTTACCATCTGATAAGGGAAGTTGCCGTCCCCATCACGCAATCCACGCCACACTTGATCACGATTAGACCTTACCTCCACATAACTC ATGTCGTGCATACGTGGAATCTCGGGAGC GATCACAACAGTAGGACCCGAGAGCA IGCCCGAACATACGAAGGTCAGAGTAGTCAGGC CTGACCGTGCGAGGGTAACTGCTAAGTTCGGAAGAACGCC ACGTAATAAAATAGGTCGTGACGGTTTGAATATACCGGATAA GAA IGTTEACTTTTGGCACAATGCATTATTTTCAAGCGAGATGTCGATTTGGATTTGGCTGAAAGACT GGGTCAGAAACGTATGCGCCATTAAAAGCCGATC CAG LIGTCACAAGTGGTAAATTAATAGGTAATAAAGACATGCAGC GTA ICAATAAACTGATGATTTTTCCGGAAGTGAC AAG TTGATCAGGATTATACTATCAGGAAAATCGTTGTTTCCCGAAAAAAACAAATACCTAATCCATTTTCTCAGCCAATGTATCATAGGTCTGAGCCACACGAG AAAGAAAAGAAAGGATTGTCTAACCCTGGACCGCTTACGCTCTCTGCACCATTTACGTCAGAACGGTCAATTAAAAAGGCCACAATAATAAGAGT ICAAATCTTGTCACGAGTCACAATCACACTATATAATTGCATATA ACGGAGICCUTC 101 IGAUNC GLEGT TCCGCAAGGTAGCCTATGACAGGTATCGGGTAACGACTTTCAAGTGCTTCCT TATCAAACTCTTTGTCATTGGAATTGAGGAGCAGCCGCACGTCTGTAAACGGAGGTATAATC

Given reads, we want to find which ones "overlap"

ACGTAGATAGCATGCTAGCAGCATGCTAGCA

GCATGCTAGCACGTAGATAGCATGCTAGCA

ATGCTAGCAGCATGCTAGCACGTAGATAGCATGCTAGCA

TGGATAAGATAGCATGCTAGCGATAGATCAAATGCTAGCAG

GCATGCTAGCAAGTACATGGATAAGATAGCATGCTAGCGATAG

Given reads, we want to find which ones "overlap"

ACGTAGATAGCATGCTAGCAGCATGCTAGCA

GCATGCTAGCACGTAGATAGCATGCTAGCA

ATGCTAGCAGCATGCTAGCACGTAGATAGCATGCTAGCA

TGGATAAGATAGCATGCTAGCGATAGATCAAATGCTAGCAG

GCATGCTAGCAAGTACATGGATAAGATAGCATGCTAGCGATAG

Given reads, we want to find which ones "overlap"

ACGTAGATAGCATGCTAGCAGCATGCTAGCA ----- GCATGCTAGCACGTAGATAGCATGCTAGCA

ATGCTAGCAGCATGCTAGCACGTAGATAGCATGCTAGCA

TGGATAAGATAGCATGCTAGCGATAGATCAAATGCTAGCAG

GCATGCTAGCAAGTACATGGATAAGATAGCATGCTAGCGATAG

Visualization of Overlap Graph

Runtime on overlap graph which has 10000 nodes

Runtime on single processor with increasing data size

Runtime of Connected Components with one processor and increasing graph size

Constant data size on multiple processors

Runtime of counting connected components on graph with 70560 vertices with increasing number of processors

Learning outcomes

- Different servers can give you dramatically different runtimes, so try to run all experiments on the same server
- Graph structure can also affect runtime due to different convergence times [3].
- Always use a seed when running experiments on random models
- Biological data can be a pain to work with

References

- 1. Kumar, S., S. Goddard, and J. Prins. Connected components algorithms for mesh-connected parallel computers. AMS, 1997.
- 2. Flick, Patrick, et al. "A parallel connectivity algorithm for de Bruijn graphs in metagenomic applications." Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 2015.
- 3. Howe, Adina Chuang, et al. "Tackling soil diversity with the assembly of large, complex metagenomes." *Proceedings of the National Academy of Sciences* 111.13 (2014): 4904-4909.
- 4. JáJá, Joseph (1992). An Introduction to Parallel Algorithms. Addison Wesley.
- Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001) [1990]. Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill.https://en.wikipedia.org/wiki/Pointer_jumping

