PARALLEL A* ALGORITHM

CSE 633 Parallel Algorithm Weijin Zhu

Instructor: Dr. Russ Miller

University at Buffalo The State University of New York

Problem Statement

To find the shortest path between two points without run into the obstacles

What is A* Algorithm?

- A search algorithm used for path searching and path traversal
- It considers all adjacent cells and picks the cell with lowest cost
- It expands paths based on function f(n)
- It plots a walkable path between multiple points on the graph

How does A* Algorithm explores?

- Given a start node and a target node
- Each step picks next landing position according to f value

- f = g + h

g: the cost to move from start to a given node

h(heuristic): the cost from a given node to destination

Heuristic (h(n))

• Manhattan Distance

h(n) = abs (current_cell.x – goal.x) + abs (current_cell.y – goal.y)

Diagonal Distance

h(n) = max { abs(current_cell.x - goal.x), abs(current_cell.y - goal.y) }

• Euclidean Distance

 $h(n) = sqrt ((current_cell.x - goal.x)^2 + (current_cell.y - goal.y)^2)$

University at Buffalo The State University of New York

Reference: https://www.geeksforgeeks.org/a-search-algorithm/

A* Algorithm Pseudocode

Initialize the open and closed list & put the starting node on the open list While the open list is not empty

- a) find the node with the least f on the open list, call it 'q'
- b) pop q off the open list
- c) generate q's 8 successors and set their parents to q
- d) for each successor
 - i) if successor is the goal, stop search

successor.g = q.g + dist(successor, q)

```
successor.h = dist(goal, successor)
```

successor.f = successor.g + successor.h

- ii) if a node with the same position as successor is in the Open list which has a lower f than successor, skip this successor
- iii) if a node with the same position as successor is in the Closed list which has a lower f than successor, skip this successor & otherwise add the node to the open list

end (for loop)

e) push q on the closed list

end (while loop)

PARALLEL A* ALGORITHM

- Randomly Generate a graph of size n by n
- Split the graph into equal size subgraphs and each subgraph contains entry & exit points
- Distribute subgraphs to different processors
- Each subgraph constructs the path from its entry point to its exit point
- Each processor passes its path to the adjacent processor

• First processor split the graph into equal size subgraphs and each subgraph contains entry & exit points

First processor distributes subgraphs to different processors •

• Combine all the paths into a big graph

64x64 grid

Number Of Processors	Time(s)	
1	0.107	Ĩ
4	0.105	
16	0.99	
64	1.42	
256	7.65	

128x128 grid

Number Of Processors	Time(s)	
1	0.64	
4	0.31	
16	0.13	
64	1.08	
256	8.02	

256x256 grid

Number Of Processors	Time(s)	
1	3.16	-
4	1.25	
16	0.45	
64	0.55	
256	8.00	

512x512 grid

Number Of Processors	Time(s)	
1	20.36	-
4	6.83	
16	1.76	
64	1.63	
256	7.24	R

1024x1024 grid

Number Of Processors	Time(s)	
1	132.71	2
4	42.30	
16	8.35	
64	9.09	
256	7.53	

2048x2048 grid

Number Of Processors	Time(s)	
1	1075.74	Ž
4	287.98	
16	47.92	
64	18.40	
256	9.27	R

References

Wikipedia contributors. "A* search algorithm." *Wikipedia, The Free Encyclopedia*. Wikipedia, The Free Encyclopedia, 28 Apr. 2020. Web. 7 May. 2020.

A* Search Algorithm, GeeksforGeeks

"Algorithms, Sequential & Parallel, A Unified Approach", Russ Miller and Laurence Boxer

"A* Search." Brilliant Math & Science Wiki, brilliant.org/wiki/a-star-search/#references.

Swift, Nicholas. "Easy A* (Star) Pathfinding." *Medium*, Medium, 1 Mar. 2017, medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2.

Questions?

