PARALLEL A* ALGORITHM

CSE 633 Parallel Algorithm Weijin Zhu

Instructor: Dr. Russ Miller
University at Buffalo The State University of New York

Problem Statement

To find the shortest path between two points without run into the obstacles

What is A* Algorithm?

- A search algorithm used for path searching and path traversal
- It considers all adjacent cells and picks the cell with lowest cost
- It expands paths based on function $f(n)$
- It plots a walkable path between multiple points on the graph

How does A* Algorithm explores?

- Given a start node and a target node
- Each step picks next landing position according to f value

$-f=g+h$
g : the cost to move from start to a given node
$h($ heuristic): the cost from a given node to destination

Heuristic (h(n))

- Manhattan Distance
h(n) = abs (current_cell.x - goal.x) + abs (current_cell.y - goal.y)

- Diagonal Distance
h(n) = max \{ abs(current_cell. x - goal.x), abs(current_cell.y - goal.y) \}

- Euclidean Distance
h(n) = sqrt ((current_cell.x - goal.x)^2 + (current_cell.y - goal.y)^2)

A* Algorithm Pseudocode

Initialize the open and closed list \& put the starting node on the open list
While the open list is not empty
a) find the node with the least f on the open list, call it ' q '
b) pop q off the open list
c) generate q's 8 successors and set their parents to q
d) for each successor
i) if successor is the goal, stop search

$$
\begin{aligned}
& \text { successor.g = q.g + dist(successor, q) } \\
& \text { successor.h = dist(goal, successor) } \\
& \text { successor.f }=\text { successor.g + successor.h }
\end{aligned}
$$

ii) if a node with the same position as successor is in the Open list which has a lower f than successor, skip this successor
iii) if a node with the same position as successor is in the Closed list which has a lower f than successor, skip this successor \& otherwise add the node to the open list
end (for loop)
e) push q on the closed list
end (while loop)

PARALLEL A* ALGORITHM

University at Buffalo The State University of New York

Parallel A* Algorithm

- Randomly Generate a graph of size n by n
- Split the graph into equal size subgraphs and each subgraph contains entry \& exit points
- Distribute subgraphs to different processors
- Each subgraph constructs the path from its entry point to its exit point
- Each processor passes its path to the adjacent processor

Parallel A* Algorithm

- First processor split the graph into equal size subgraphs and each subgraph contains entry \& exit points
\square Entry point \square Exit point

Parallel A* Algorithm

- First processor distributes subgraphs to different processors

Parallel A* Algorithm

Parallel A* Algorithm

- Combine all the paths into a big graph

64×64 grid

Number Of Processors	Time(s)
1	0.107
4	0.105
16	0.99
64	1.42
256	7.65

128×128 grid

Number Of Processors	Time(s)
1	0.64
4	0.31
16	0.13
64	1.08
256	8.02

256x256 grid

Number Of Processors	Time(s)
1	3.16
4	1.25
16	0.45
64	0.55
256	8.00

512×512 grid

Number Of Processors	Time(s)
1	20.36
4	6.83
16	1.76
64	1.63
256	7.24

1024×1024 grid

Number Of Processors	Time(s)
1	132.71
4	42.30
16	8.35
64	9.09
256	7.53

2048×2048 grid

Number Of Processors	Time(s)
1	1075.74
4	287.98
16	47.92
64	18.40
256	9.27

Speed Up

University at Buffalo The State University of New York

References

Wikipedia contributors. "A* search algorithm." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 28 Apr. 2020. Web. 7 May. 2020.

A* Search Algorithm, GeeksforGeeks
"Algorithms, Sequential \& Parallel, A Unified Approach", Russ Miller and Laurence Boxer
"A* Search." Brilliant Math \& Science Wiki, brilliant.org/wiki/a-star-search/\#references.
Swift, Nicholas. "Easy A* (Star) Pathfinding." Medium, Medium, 1 Mar. 2017, medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2.

Questions?

