
Parallel Implement of
Convex Hull Problem

CSE 633 - Parallel Algorithms (Spring 2020)

Weiyang Chen

Instructor: Dr. Russ Miller

2

Outline

● Convex Hull Definition

● Graham’ Scan Aglorithm

● Combine Two Convex Hull

● Parallel Implementation

● Running Time Analysis

● Conclusion

● Future Work

● Reference

3

Assume we have a set of points in

the plane. The convex hull of set of

points is defined as the smallest

convex polygon, that encloses all

the points in the set

Convex Hull Definition

4

Convex Hull Example

Imagine all the points as being

pegs. The convex hull is the

shape of rubber-band stretched

around the pags.

5

Graham’s Scan Algorithm

First :

Find a starting point that in the convex

hull. (Lowermost point, if there is more

than two lowermost points, then select

leftmost one)

6

Second :

Compute remaining n - 1 points’ angle with

respect to the starting point.

Formula :

After Computing, Sort the points by angle

with respect to the starting point. (If two

points have same angle, then sort by the

distance respect to the starting point from

small to big)

7

How to determine a point belongs to convex hull?

Scan:

1. Using stack to store, add starting point and second point to the stack.

2. Start Scan from third point:

a. Set T1 and T0 as top two points in the stack, and current scan point as

T2

b. Connect point T1 and T0 as straight line and to determine T2 is

located on left or right of straight line. (Cross Product)

c. If T2 on the left of straight line or on the straight line, then push the T2

into stack. and start next scan.

d. If T0, T1, T2 are collinear then it means T1 is not extreme point, so

remove T1, and start next scan

e. If T2 on the right of straight line, then pop top point from the stack

which is T1 and repeat from step a.

3. When we finish scanning, we will get a stack that contains all the points of

convex hull in order.

Graham’s Scan Algorithm Continue

8

Graham’s Scan Algorithm Continue

9

Merge Two Convex Hull Algorithm

The idea to merge two convex hull

together is to find top and bottom

tangent line, and connect them by the

tangent line and remove all the points

between two tangent lines.

10

Merge Two Convex Hull Algorithm Continue

How to find the tangent line between two convex hull?

Bottom Tangent Line:

1. Find left convex hull’s most right point P1, and right convex

hull’s most left point P2 and connect together.

2. Find the new P1 that is next point in the clockwise. And find

new P2 that is next point in the counterclockwise.

3. Stop until it is fix.(Means if P1 or P2 go next, the connect line

will cross to other line in the left or right convex hull)

Top Tangent Line:

Same to the Bottom tangent line, but P1 goes as

counterclockwise and P2 goes as clockwise.

11

Parallel Implementation - Tree Structure

● Input a point data set with size n and p processors.

● Using master processor to sort the data by x-coordinate and separate the data

to each processor equally.

● Each processor receive n/p size data from master processor, and parallelly find

local convex hull by Graham’s Scan.

● Recursively merge convex hull together between two processors by finding

their top and bottom tangent line.

12

PARALLEL EXAMPLE

As Example :

Data Size = 40

of Processor = 4

13

PARALLEL EXAMPLE

14

Parallel Implementation - Code

Receive Rank:

R = multiple of 2 l̂evel

distance between Send and Receive :

D = 2 (̂level-1)

Send Rank:

S = R- D

15

Image Example

16

Running Time Analysis

● Running Time vs. # processor with 10,000 points

● Running Time vs. # processor with 100,000 points

● Running Time vs. # processor with 1,000,000 points

● Running Time vs. # processor with 10,000,000 points

● Speedup Rate vs. # processor with four different size data

17

Graph of Running Time with Data Size = 10,000
Processor # Time(sec)

1 0.1565

2 0.0947

4 0.0775

8 0.0616

16 0.0456

32 0.0419

64 0.0452

128 0.0725

256 0.1715

512 0.2211

18

Graph of Running Time with Data Size = 100,000
Processor # Time(sec)

1 1.260

2 0.790

4 0.600

8 0.466

16 0.359

32 0.348

64 0.347

128 0.895

256 1.287

512 2.121

19

Graph of Running Time with Data Size = 1,000,000

Processor # Time(sec)

1 19.498

2 11.371

4 9.619

8 6.590

16 4.710

32 3.839

64 4.205

128 4.992

256 5.234

512 6.155

20

Graph of Running Time with Data Size = 10,000,000

Processor # Time(sec)

1 158.06

2 126.20

4 110.33

8 99.12

16 92.24

32 87.52

64 100.53

128 129.25

256 142.58

512 155.02

21

Speedup

22

Conclusion

• As observation, more processors does not mean better running time

performance.

- Running Time decreasing when we adding processor before 32

processor.

- Running Time increasing when continue adding processor after

32 processor.

• Parallel algorithm can save time a lot. When we have 10,000,000

size data. Although the best speedup is about 180% compare to

sequential running time, it save about 70 sec in real time.

23

Future Work

For now. I implemented the Tree Structure Parallel Algorithm

which only accept the number of processor is equal to power of 2.

And in the future I will implement the Mesh Structure Parallel

Algorithm to accept more different number of processor.

24

Reference

• Russ Miller; Laurence Boxer : Algorithms Sequential and Parallel: A Unified Approach (Third Edition)

• Russ Miller and Quentin F. Stout : Efficient Parallel Convex Hull Algorithm ; IEEE Transaction on Computers

vol. 37 no. 12; December 1988.

• Pascal Sommer; A gentle introduction to the convex hull problem. Dec 10, 2016

https://medium.com/@pascal.sommer.ch/a-gentle-introduction-to-the-convex-hull-problem-62dfcabee90c

• MPI For Python : https://mpi4py.readthedocs.io/en/stable/tutorial.html

• CCR Tutorial : https://ubccr.freshdesk.com/support/solutions

https://medium.com/@pascal.sommer.ch/a-gentle-introduction-to-the-convex-hull-problem-62dfcabee90c
https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://ubccr.freshdesk.com/support/solutions

25

Thank You!

