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Let’s have a two-dimensional grid with cells,
and each of the cells can be dead (white) or
alive (black).

To move on from the current
state to the next generation,
we update the grid according
to the game’s rules.

Each alive cell,
• stays alive if it has two or

three neighbours,
• otherwise it dies.

Any dead cell, that has
• exactly three neighbours,

becomes alive,
• otherwise it remains dead.

The Rules

Short:

For neighbourhood count i,
cell ← alive ? i = 2 or i = 3 : i = 3;
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Single Core Implementation

The cell data is maintained in
a two-dimensional boolean array,
where the first index is the row
and the second index gives the co-
lumn of any cell.

bool **world, **buffer;

world represents the current
state, buffer the state that is
currently calculated.

for each row j
for each row i

c ← countN(j,i)
buffer[j][i] ← rule(c)

swap(world, buffer)

step()

countN() calculates the count of
alive neighbours of the cell in row
j and column i, rule() implements
Conway’s Game Of Life Rule.
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When storing world and buffer in
shared memory, parallel implementati-
on is straightforward.

Using #pragma omp for to execute
loop in parallel.

void step() {

#pragma omp for

for (int j = 0; j < HEIGHT; j++) {

for (int i = 0; i < WIDTH; i++) {

int c = countN(i, j);

buffer[j][i] = world[j][i] ? (c == 2 || c == 3) : c == 3;

}

}

}

speedup of 30.4 on the 32
core machine
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OpenMPI Implementation

• devide the world in t pieces, each for one process

• calculate cell by cell, generation by generation

• communication at the borders needed

• synchronization after each step
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Result Verification

The results of the OpenMP and MPI im-
plementation need to be verifyed.

• Output result state on command line
(for small boards)

• comparison to (single-core) reference
implementation (golly)

• calculation of well-known patterns
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Open MPI Input Size Benchmark

Compared to the OpenMP implementation, the Open MPI im-
plementation shows a much worse speedup, even on a single
machine. This is due to the message passing, which can be
done through a network of nodes, but significantly slows down
things.

single core walltime

walltime for 2, 3 and 4 cores

speedup for 2, 3 and 4 cores

• runtime still linear
• speedup much worse

than with OpenMP

• multi-process MPI run-
time varies more than
single-process runtime

test case: different board sizes, 4 generations of f-pentomino
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At CCR, the maximum speedup we can achive with a OpenMP
implementation is 32. With the Open MPI implementation, we
can achive greater speedups. For example, by using 32 2-core
nodes, we can achieve up to 50 times the single-core speed.

test case: board 16192x16192, 16 generations of f-pentomino
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Open MPI Process Number Benchmark

Using machine with more cores, we can improve these results.
Usings 4 8-core machines, we can achieve up to 26 times the
single core computation speed:

It’s remarkable that for the first 8 tests, which all took place on
a single machine with 8 cores, the speedup is almost optimal
(that is, 7.96 when using 8 cores).

test case: board size 16192x16192, 16 generations of f-pentomino
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Further Improvements

Currently, the MPI implementation does not show any different
runtimes for inputs of different kinds, but same size due to the
basic implementation of Conway’s rules.

• improve runtime by not recalculating areas of the board, that
did not get updated in the last generation

Also, the current implementation does not consider how the
nodes are connected.

• improve runtime by splitting
the game’s board into a grid
which mirrors the structure
of the cluster, in order to mi-
nimize waiting times
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Conclusion and Future Work

• single core implementation is straightforward

• OpenMP implementation achieves very good speedup, but
is limited to machine size

• Open MPI is harder to implement,
but can use more cores. In total, MPI
achieves a better speedup, as we can
use multiple nodes.

• For future work, cuda could be useful to process as many
cells as possible in parallel

For neighbourhood count i,
cell← alive ? i = 2 or i = 3 : i = 3;

• Also, improving the MPI implementation by considering the
grid structure will give better speedup

• Engine should be extended in a way that
can simulate other cellular automatons
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