
Artificial Bee Colony Algorithm

using MPI

Pradeep Yenneti

CSE633, Fall 2012

Instructor : Dr. Russ Miller

University at Buffalo, the State University of New York

OVERVIEW

Introduction

Components

Working

Artificial Bee Colony algorithm (RAM)

Artificial Bee Colony algorithm (Parallel)

Performance

An Alternative Parallel Approach

Observations / Limitations

Future goals

References

INTRODUCTION

Artificial Bee Colony (ABC) algorithm is a swarm-based
meta-heuristic optimization algorithm.

Algorithm based on the foraging behavior of bees in a
colony.

Applications :

 Optimal multi-level thresholding, MR brain image
classification, face pose estimation, 2D protein folding

COMPONENTS

Food Source :

 A food source location denotes the possible solution (vector
with n parameters) .eg. Amount of food in the source denotes
quality (fitness).

Employed Bees :

 Retrieve food from source and report back neighboring
sources. One bee per source.

Scout Bees :

 Find and update different sources. Employed bees whose
food source is exhausted become Scout bees.

Onlooker Bees :

 Choose food source based on inputs from Employed bees.

WORKING

Initialization phase :

 Vector xm (m = 1 … SN). Each vector xm contains n variables
(1 … n) . xmi=li+rand(0,1)∗(ui−li). li, ui = bounds --- (1)

Employed bees phase :

Food source υmi=xmi+ϕmi(xmi−xki) --- (2)

Fitness function fitm(x m⃗) = 1/(1 + fm(x m⃗)) --- (3)

Onlooker bees phase :

Probability pm = fitm(x m⃗) / ∑ m=1…SN fitm(x m⃗) --- (4)

Scout bees phase :

New food sources are randomly selected and solutions
selected based on (1).

WORKING

WORKING

1 4.113152 7.630029 18.6177 9.005129 17.91446

2 9.935555 13.37011 4.745863 10.6545 19.78366

3 10.95558 19.49226 17.84674 10.75404 18.06841

4 18.53284 0.792465 18.59932 3.516931 14.82533

5 14.34575 3.136435 5.886008 6.576565 7.916828

6 17.86021 14.02121 17.46455 14.59524 16.75909

7 3.731504 5.224778 16.29288 11.44785 0.314989

8 0.627248 13.82126 3.269592 13.46171 13.24224

Serial representation – n Rows, single processor (n food sources)

WORKING

1 4.113152 7.630029 18.6177 9.005129 17.91446

2 9.935555 13.37011 4.745863 10.6545 19.78366

3 10.95558 19.49226 17.84674 10.75404 18.06841

4 18.53284 0.792465 18.59932 3.516931 14.82533

5 14.34575 3.136435 5.886008 6.576565 7.916828

6 17.86021 14.02121 17.46455 14.59524 16.75909

7 3.731504 5.224778 16.29288 11.44785 0.314989

8 0.627248 13.82126 3.269592 13.46171 13.24224

Parallel representation - n Rows split among m processors

(n/m food sources per processor)

DATA AND PROCESSORS USED

Programming Language : C++ with MPI

of Processors : 1-16. 8 cores per processor. (Total 128 cores).

Size of data (data type = float):

• 65536 X 5

• 65536 X 40

• 512000 X 10

• 768000 X 10

• 8192 X 20

Upper limit = 10, Lower limit = -10

Criterion for termination of program :

• global_minimum = 0.000001 (OR) max_cycle = 1000

Number of runs for each data set and processor # : 10

Functions used :

• Sphere : f(x) = Ʃ xi
2 (i = 1 – D)

• Rastringin : f(x) = Ʃ (xi
2 - 10*cos(2π*xi)

 +10) --- (i = 1 – D)

RAM ALGORITHM

 Start

 Initialize parameters

 Initial solution

 REPEAT

o Find and evaluate solution by Employed bees

o Select and update food source by Onlooker bees

o Evaluate solution by Onlooker bees

o If solution is abandoned, generate new solution by

 Scout bees

 UNTIL criteria are met

 End

PARALLEL ALGORITHM

 Start

 Initialize parameters

 Divide populations into sub-groups for each processor

 Initial solution

 REPEAT

o Find and evaluate solution by Employed bees

o Select and update food source by Onlooker bees

o Evaluate solution by Onlooker bees

o If solution is abandoned, generate new solution for Scout
bees

o Exchange information within sub-groups (local worst/best
solutions)

 UNTIL criteria are met

 End

PARALLEL ALGORITHM

1. For each cycle, Processor 0 generates random pairs

and communicates the pairing to the remaining

processors (MPI_Send, MPI_Recv)

2. At the end of each cycle, the processors replace the

local worst solution with the local best solution

obtained from their respective partners.

3. After the desired criteria are met, the processors

exchange local best solutions and receive the overall

best solution (MPI_Allreduce)

VALUES OBTAINED

 Time taken for different data sizes and # cores

 Input data = #Food sources, #Parameters per food

source

65536, 40 65536, 5 512000, 10 8192, 20 768000, 10

1 970.23 38.11 448.37 37.56 677.45

2 513.21 19.21 227.46 19.13 344.87

4 269.41 9.94 114.34 9.61 174.15

8 139.84 5.42 59.26 4.98 88.85

16 71.91 2.96 30.32 2.69 45.77

32 37.81 1.59 15.96 1.32 23.06

64 19.83 0.92 8.33 0.83 12.40

128 10.67 0.51 4.62 0.65 6.57

PERFORMANCE – Time vs # cores

0.10

1.00

10.00

100.00

1000.00

0 20 40 60 80 100 120 140

T

i

m

e

 (

s

e

c

o

n

d

s)

Cores

65536, 40

65536, 5

512000, 10

8192, 20

768000, 10

PERFORMANCE - speedup

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

0 20 40 60 80 100 120 140

S

p

e

e

d

u

p

cores

65536, 40

65536, 5

512000, 10

8192, 20

768000, 10

Ideal

AN ALTERNATIVE PARALLEL APPROACH

 Best solutions are not exchanged between processors

between cycles.

 After criteria are met, Local best solutions are

exchanged between processors and the overall best

solution is chosen.

VALUES OBTAINED

 Time taken for different data sizes and # cores

 Input data = #Food sources, #Parameters per food

source

65536, 40 65536, 5 512000, 10 8192, 20 768000, 10

1.00 970.23 38.11 448.37 37.56 677.45

2.00 506.11 19.83 230.47 19.04 344.03

4.00 263.85 10.51 116.64 9.89 175.59

8.00 138.73 5.89 61.72 5.06 89.67

16.00 69.34 3.05 20.15 2.67 45.65

32.00 35.29 1.61 15.22 1.45 22.89

64.00 18.64 0.89 8.14 0.92 12.08

128.00 9.45 0.48 4.45 0.63 6.26

PERFORMANCE – Comparison of both

approaches

1.00

10.00

100.00

1000.00

1.00 10.00 100.00 1000.00

T

i

m

e

 (

s

e

c

o

n

d

s)

Cores

65536, 40 - II

65536, 40 - I

768000, 10 - II

768000, 10 - I

OBSERVATIONS / LIMITATIONS

 Time taken to execute increases based on the number

of Food Sources (linear) and number of Parameters

per Food Source (non-linear, possibly polynomial).

 For a given number of processors, speedup increases

as the number of parameters. (Increase w.r.t. time in

inter-process communication is linear while increase

within each processor is non-linear).

 For a fixed number of food sources, speedup gradually

decreases as the number of processors increase, as

seen in the speedup of the data set (8192 X 20).

OBSERVATIONS / LIMITATIONS

 For a lower number of processors, the first parallel

approach was found to be (marginally) faster.

 As the number of processors increases, the alternative

approach appears to be (marginally) faster. Less

communication is a factor.

 Beyond a certain number of parameters (eg.20), the

output does not converge adequately even after >

1000 cycles

FUTURE GOALS

 Implement in OpenMP and CUDA

 Compare performances between MPI, OpenMP and

CUDA

REFERENCES

 Artificial bee colony algorithm on distributed environments
(Banharnsakun, A.; Achalakul, T.; Sirinaovakul, B.)
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716
309&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2F
abs_all.jsp%3Farnumber%3D5716309

 A powerful and efficient algorithm for numerical function
optimization : artificial bee colony (ABC) algorithm (D.
Karaboga, B. Basturk)
http://www.springerlink.com/content/1x7x45uw7q7w3x35/

 A comparative study of Artificial Bee Colony algorithm

 http://chern.ie.nthu.edu.tw/gen/comparative-study.pdf

 http://en.wikipedia.org/wiki/Artificial_bee_colony_algorithm

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716309&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5716309
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716309&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5716309
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716309&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5716309
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716309&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5716309
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716309&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5716309
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716309&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5716309
http://www.springerlink.com/content/1x7x45uw7q7w3x35/
http://chern.ie.nthu.edu.tw/gen/comparative-study.pdf
http://chern.ie.nthu.edu.tw/gen/comparative-study.pdf
http://chern.ie.nthu.edu.tw/gen/comparative-study.pdf
http://chern.ie.nthu.edu.tw/gen/comparative-study.pdf
http://chern.ie.nthu.edu.tw/gen/comparative-study.pdf
http://en.wikipedia.org/wiki/Artificial_bee_colony_algorithm

QUESTIONS ?

THANK YOU

