
Shortest pair point algorithm
Yifu

Question Statement

• Input: Sorted points in 2d space by x axis
• Output: position of closest pair of points.

Local / Recursive Sequential Algorithm

• Divide and conquer
• Step 1: divide the points from the middle, until below a constant

number.

Local / Sequential Algorithm

• Step 2: Calculate closest pair using
constant time operation on
constant size division.

Local / Sequential Algorithm

• Step 3 Merging: Get inputs and outputs from both sides, Find minimal
distance from both side, get array of points in the middle strip.

Local / Sequential Algorithm

• Step 4 Merging: Sort the middle strip by y position. (O(n log n), can be
optimized into O(n))

Local / Sequential Algorithm

• Step 5: since there can not be over 6 points in the same box, and any
points outside of that box would have longer distance, we can find
shortest pair in this sorted strip in O(n) time by comparing each point
to its next 6 neighbor.

Local / Sequential Algorithm

• Step 6: Return the closest pair from left, right or middle region
recursively.

Division of tasks

• Use python to generate
sorted input, x will be in
order of index, y will be
totally random
• Every point have

minimum distance of 1,
Move 2 points closer
than 1 to “generate”
correct answer.

Parallel Algorithm

• We can partition data into n files, run sequential algorithm on n cores,
and merge it using MPI to send the closest pair and middle half strip
to its neighbor cores.
• Number of tasks is
currently limited to
Power of 2.

Parallel Algorithm

• Algorithm uses a variable global_ranking_identifier on each core
to identify which round. This variable multiply by two each time
and loop will end when the number equal to number of cores
• Following code is used to determine which core get to send and

receive.

• Everytime “odd number” nodes send the front package and back
package to the “even number” nodes. Front and end package size
is corresponding to stripe of minimum size

Parallel Algorithm

• After front package is send to the ”even number” node, it combines
with back package from ”even number” node to form a middle stripe.
• Then the middle stripe is used to find smallest pair in between.
• ”even number” node saved the back package and prepare to send it

or combine it in the future.

Running on slurm.

• Increase number of ntasks-per-
node first, then increase number
of nodes.
• Skylake cpu xeon gold 6130
• 16 cores, 32 threads
• 2.10 GHz

• Use Two timing mechanisms, srun
time from /usr/bin/time, and total
time returned from CCR-email.

Runtime for Parallel algorithm

• Total Data Points: 33 million 554
thousands 432
• Split data points into total nodes

number of files.
• Generate new dataset each run.
• Measured only one run per task.
• Conclusion: Exponential increase

in nodes leads to exponential
increase in performance until 128
nodes.

1

2

4

8

16

32

1 2 4 8 16 32 64 128 256 512

System Runtime (s)

1

2

4

8

16

32

1 2 4 8 16 32 64 128 256 512

runtime total (s)

Parallel runtime (increase data points and
nodes)
• Increase data points and nodes by

2x every measure.
• Was not able to get 200 million

data points due to disk size.
• Measured multiple times and take

the mode.
• Used same dataset.
• Generally shows linear increase.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

131072 1048576 8388608

System Runtime (s)

0

2

4

6

8

10

12

14

131072 1048576 8388608

runtime total (s)

End of slides

• Thank you

