LASSO Parallel with MPI

Yihe Yu

May 7, 2021

Why LASSO?

- LASSO is short for least absolute shrinkage and selection operator.
- It is a regression analysis method that performs both variable selection and regularization.
- It enhances the prediction accuracy and interpretability of the resulting statistical model.
- It has a variety of interpretations in terms of geometry, Bayesian statistics and convex analysis.
- It helps in the models analysis and provide an optimum linear combination.
- Its applications include cross-section of return forecasts and asset portfolio management etc.

Lasso: Formulation

A subset-selection problem in linear regression:

$$
y=X \beta
$$

where y is $n \times 1, X$ is $n \times K, \beta$ is $K \times 1$. n is the sample size, K is the number of features (candidate variables).

We can solve β by

$$
\min _{\beta \in \mathbb{R}^{p}}\left\{\frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1}\right\}
$$

LASSO: Optimization

We can solve the optimization problem by considering it as an OLS problem with a constraint, i.e.,

$$
\beta^{O L S}=\left(X^{T} X\right)^{-1} X^{T} Y
$$

s.t.

$$
\sum_{j=1}^{K}\left|\beta_{j}\right| \leq c
$$

LASSO: Computational Complexity

For $\left(X^{T} X\right)^{-1} X^{T} Y$,

- ($\left.X^{T} X\right)$ takes $\mathcal{O}\left(n K^{2}\right)$ time and produces a $(K \times K)$ matrix.
- The inverse of a $(K \times K)$ matrix takes $\mathcal{O}\left(K^{3}\right)$ time.
- ($\left.X^{T} Y\right)$ takes $\mathcal{O}\left(n K^{2}\right)$ time and produces a $(K \times K)$ matrix.
- The final matrix multiplication of two $(K \times K)$ matrices takes $\mathcal{O}\left(K^{3}\right)$ time.

The computational complexity of LASSO implemented using LARS algorithm (Efron et al., 2004) is $\mathcal{O}\left(K^{3}+n K^{2}\right)$.

Matrix Multiplication: Parallel Implementation

- For typical LASSO settings $K \gg n$, so the computational complexity $\mathcal{O}\left(K^{3}+n K^{2}\right)$ then become $\mathcal{O}\left(K^{3}\right)$.

$$
\mathrm{o}\left(K^{3}+N K^{2}\right) \stackrel{K \gg \mathrm{n}}{\Longleftrightarrow} \mathrm{o}\left(K^{3}\right)
$$

$$
\mathrm{O}\left(K^{3}+n_{\max } K^{2}\right) \stackrel{K \gg \mathrm{n}}{\square} \mathrm{O}\left(K^{3}\right)
$$

- Therefore the data parallelism which divide the matrix X along example dimension n does not boost the regression process.
- A possible way to improve the performance is to apply MPI to the matrix multiplication.

Matrix Multiplication: MPI Implementation

Consider matrix multiplication $M_{1} \cdot M_{2}=M_{3}$.

LASSO with MPI Matrix Multiplication

Algorithm 1 LASSO coefficients

Input: $\operatorname{DataSet}(X, Y), \operatorname{lr}$ (learning rate), p (penalty)
Output: β (LASSO coefficients)

```
1: for \(X, Y\) in DataSet do
2: \(\quad Y_{\text {pred }} \leftarrow X \cdot \beta\)
3: \(\quad d \beta \leftarrow\left(-2 \cdot X \cdot\left(Y-Y_{\text {pred }}\right)+I(\beta) \cdot p\right) / X\).shape \([0]\)
4: \(\quad \beta \leftarrow \beta-l r \cdot d \beta\)
```

5: end for
6: return β

Results

We conduct our experiment on UB-CCR debug partition nodes, which has 12 cores per node.

- If cores smaller than 12 , deploy on 1 node, else on 2 nodes
- For MPI, 1 core as master and the rest as computational cores
- Matrix Multiplication: $M 1 \cdot M 2$, each matrix is of 500×500
- LASSO: 30 examples, each example has 250 features

Experiment (CCR debug-partition \#core=12)

\#Cores	MM/s	Speedup	LASSO/ms	Speedup
$\mathbf{1}$	23.876	1.00	351	1.00
$\mathbf{2}$	23.046	1.04	336	1.04
$\mathbf{4}$	7.387	3.23	110	3.19
$\mathbf{6}$	4.604	5.19	69	5.09
$\mathbf{8}$	3.317	7.20	48	7.31
$\mathbf{1 0}$	2.611	9.14	38	9.24
$\mathbf{1 2}$	2.214	10.78	33	10.64
$\mathbf{1 4}$	8.753	2.73	147	2.39
$\mathbf{1 6}$	$\mathbf{9 . 1 1 7}$	2.62	157	2.24
$\mathbf{1 8}$	10.335	2.31	166	2.11
$\mathbf{2 0}$	10.668	2.24	173	2.03
$\mathbf{2 4}$	12.789	1.87	194	1.81

- MM/s

- LASSO/ms

Results

We compare the time using in total 24 cores on $6,8,12$ and 24 nodes for the Matrix Multiplication.

- Time (s)

\# nodes * \# codes per node	Time (s)	Speed up
6 * 4	17.954	$1 x$
8 * 3	18.973	$0.946 x$
12 * 2	18.434	$0.974 x$
24 * 1	12.253	$1.465 x$

Conclusion

- MPI in matrix multiplication and LASSO achieves linear speedup wrt. number of cores on single node.
- LASSO has similar speed up with matrix multiplication, which shows the correctness of our computational complexity analysis and implementation.
- MPI on multiple nodes may suffer from the communication as shown in the previous section, the best performance is achieved when we utilize all the cores.

References

- Algorithms Sequential \& Parallel: A Unified Approach. 3rd Ed. Russ Miller and Laurence Boxer. Cengage Learning. 2012.
- Least Angle Regression. Efron, Bradley and Hastie, Trevor and Johnstone, Iain and Tibshirani, Robert. The Annals of Statistics. 2004 Apr. http://statweb.stanford.edu/~imj/WEBLIST/2004/ LarsAnnStat04.pdf
- https://ubccr.freshdesk.com/support/solutions/articles/ 13000010161-mpi-and-parallel-computing
- https://rabernat.github.io/research_computing/ parallel-programming-with-mpi-for-python.html
- https://stats.stackexchange.com/questions/76518/ what-is-the-time-complexity-of-lasso-regression
- https://www.geeksforgeeks.org/ implementation-of-lasso-regression-from-scratch-using-pyt

Thank you

