LASSO Parallel with MPI

Yihe Yu

May 7, 2021

Yihe Yu

May 7, 2021 1 / 13

- LASSO is short for least absolute shrinkage and selection operator.
- It is a **regression analysis method** that performs both variable selection and regularization.
- It enhances the prediction accuracy and interpretability of the resulting statistical model.
- It has a variety of interpretations in terms of geometry, Bayesian statistics and convex analysis.
- It helps in the models analysis and provide an **optimum linear combination**.
- Its applications include **cross-section of return forecasts** and asset portfolio management etc.

A subset-selection problem in **linear regression**:

$$y = X\beta$$

where y is $n \times 1$, X is $n \times K$, β is $K \times 1$. n is the sample size, K is the number of features (candidate variables).

We can solve β by

$$\min_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{2} \left\| y - X\beta \right\|_2^2 + \lambda \left\| \beta \right\|_1 \right\}$$

We can solve the optimization problem by considering it as an OLS problem with a constraint, i.e.,

$$\beta^{OLS} = (X^T X)^{-1} X^T Y$$

s.t.

$$\sum_{j=1}^{K} |\beta_j| \le c$$

For $(X^T X)^{-1} X^T Y$,

- $(X^T X)$ takes $\mathcal{O}(nK^2)$ time and produces a $(K \times K)$ matrix.
- The inverse of a $(K \times K)$ matrix takes $\mathcal{O}(K^3)$ time.
- (X^TY) takes $\mathcal{O}(nK^2)$ time and produces a $(K \times K)$ matrix.
- The final matrix multiplication of two $(K \times K)$ matrices takes $\mathcal{O}(K^3)$ time.

The computational complexity of LASSO implemented using LARS algorithm (Efron et al., 2004) is $\mathcal{O}(K^3 + nK^2)$.

Matrix Multiplication: Parallel Implementation

• For typical LASSO settings $K \gg n$, so the computational complexity $\mathcal{O}(K^3 + nK^2)$ then become $\mathcal{O}(K^3)$.

- Therefore the data parallelism which divide the matrix X along example dimension n does not boost the regression process.
- A possible way to improve the performance is to apply MPI to the matrix multiplication.

Matrix Multiplication: MPI Implementation

Consider matrix multiplication $M_1 \cdot M_2 = M_3$.

Algorithm 1 LASSO coefficients

Input: DataSet(X, Y), lr(learning rate), p(penalty)**Output:** β (LASSO coefficients)

- 1: for X, Y in DataSet do 2: $Y_{pred} \leftarrow X \cdot \beta$ 3: $d\beta \leftarrow (-2 \cdot X \cdot (Y - Y_{pred}) + I(\beta) \cdot p) / X.shape[0]$ 4: $\beta \leftarrow \beta - lr \cdot d\beta$ 5: end for
- 6: return β

Results

We conduct our experiment on UB-CCR debug partition nodes, which has 12 cores per node.

- If cores smaller than 12, deploy on 1 node, else on 2 nodes
- For MPI, 1 core as master and the rest as computational cores
- Matrix Multiplication: $M1 \cdot M2$, each matrix is of 500×500
- LASSO: 30 examples, each example has 250 features

We compare the time using in total 24 cores on 6, 8, 12 and 24 nodes for the Matrix Multiplication.

# nodes * # codes per node	Time (s)	Speed up
6 * 4	17.954	1x
8 * 3	18.973	0.946x
12 * 2	18.434	0.974x
24 * 1	12.253	1.465x

nodes * # codes per node

- MPI in matrix multiplication and LASSO achieves linear speedup wrt. number of cores on single node.
- LASSO has similar speed up with matrix multiplication, which shows the correctness of our computational complexity analysis and implementation.
- MPI on multiple nodes may suffer from the communication as shown in the previous section, the best performance is achieved when we utilize all the cores.

References

- Algorithms Sequential & Parallel: A Unified Approach. 3rd Ed. Russ Miller and Laurence Boxer. Cengage Learning. 2012.
- Least Angle Regression. *Efron, Bradley and Hastie, Trevor and Johnstone, Iain and Tibshirani, Robert.* The Annals of Statistics. 2004 Apr. http://statweb.stanford.edu/~imj/WEBLIST/2004/LarsAnnStat04.pdf
- https://ubccr.freshdesk.com/support/solutions/articles/ 13000010161-mpi-and-parallel-computing
- https://rabernat.github.io/research_computing/ parallel-programming-with-mpi-for-python.html
- https://stats.stackexchange.com/questions/76518/ what-is-the-time-complexity-of-lasso-regression
- https://www.geeksforgeeks.org/ implementation-of-lasso-regression-from-scratch-using-pyt

Thank you