
IMAGE
CONVOLUTION
CSE633: Parallel Algorithm

Zhi Wen Huang

Image Convolution

NOTE: Neque in

dignissim, and quet

nis et umis varius.

2

Sequential Approach

• Matrix Size 2^10 * 2^10

• Kernel Size 3x3

• Use zero-padding images

- Add extra layers to do convolution.

• Medium filtering – This is use to reduce noisy image.

- Our method is to find the medium base of the kernel size.

3

Recap

- Problem: How fast we can reduce the computation for

depending on kernel and size.

4

Parallel Approach

5

• Matrix Size 2^15 x 2^15

• Kernel Size 3x3

• Padding images

- Each matrixes padded image received from adjacency node if necessarily.

- Out layer of the matrix are added zero-padded images.

• Medium filtering – This is use to reduce noisy image.

- The Kernel size is 3x3.

• Template matching – This is to find common in terms of pixels

- Kernel size is 27x27

- Uses Sum of Squared Difference algorithm

Things I do..

6

1 2 … N/S

2 3 …

0 …

N/S N/S

N/S+1 N/s+2 … N

…

1 …

N/S N/S

N/s+1 +2 … N/S

+2 3 …

2 …

N N

N/s+1 +2 … N

+2 …

3 …

N N

Continued..

- When Node0 needs the outside layer from

Node1, Node1 send the first column to Node0.

- Node1 waits till Node0 complete the tasks then

Node0 will send the completed column to

Node1.
7

0 0 0 0 0

0 1 2 … N/S

0 2 3 …

0 0 …

0

0 N/S N/S

N/S+1

1 …

N/S+1

N/S

0

N/S

0 0 0 0 0

N/S+1 2 … N 0

2 3 … 0

1 … 0

0

0

Corners

• Node3 Upper left corner need to

wait Node1 and Node2 to send

the lower row from Node1 and

right column from Node3.

• Why Node3 does not need to

get Node0 the corner value?

• Since Node1 and Node2 already

received the corner value from

Node0, Then when passing the

data, we just need to take one of

the value either from Node1 or

Node2.

8

1 2 … N/S

2 3 …

0 …

N/S N/S

N/S+1 N/s+2 … N

…

1 …

N/S N/S

N/s+1 +2 … N/S+1

+2 3 …

2 …

N N

N/s+1 +2 … N/S+1

+2 …

3 …

N N

Parallel Approach cont.

• 1024x1024 Matrix

• 16 Nodes

• Each will have:

- 256*256 matrix

- Padded matrix will be 257*257

• 48 Message passing and receiving.

9

Parallel Approach cont.

• Mpi4py – Library for Python to work with MPI

• Python/Anaconda

• What I change with my original idea:

- Only using 3x3 kernel

- Changing the image size to max for each node.

10

Results
• Matrix 2^10x2^10 with 3x3 kernel

11

Nodes Time(s) Nodes Time(s)

1 117.34 32 0.10

2 29.21 64 0.022

4 7.44 128 0.007

8 1.85 256 0.024

16 0.41 512 0.030

Results

• Matrix 2^12 x 2^12 kernel 3x3

12

Nodes Time(s) Nodes Time(s)

1 2122.82 32 1.65

2 530.26 64 0.40

4 133.24 128 0.11

8 34.48 256 0.26

16 6.7 512 0.52

Results

• Matrix 2^15 x 2^15 Kernel 3x3

13

Nodes Time(s) Nodes Time(s)

1 NAN 32 26.3

2 NAN 64 6.89

4 1810.27 128 1.78

8 454.05 256 0.41

16 105.24 512 0.96

Computations in Numbers

• Trial 1: 2^10 * 2^10 * 3 x 3 = 9437184 computations

• Trial 2: 2^12 * 2^12 * 3 x 3 = 150994944 computations

• Trial 3: 2^15 * 2^15 * 3 x 3 = 9663676416 computations

• However this does not include how long each processor waits.

14

Template Matching

- In this application, we want to find the correlation between in

pixel given the template and the image.

- Treat it as “Where’s Waldo” book where we have he picture of

Waldo’s head as the template and image is the background.

15

Normalized Cross-Correlation

• Normalized Cross-Correlation algorithm is used to detect

similarities between the template kernel and the image.

16

Sequential Approach

• Given a template 5x5 and an Image

• Calculate the NCC value for each image patch and return the max NCC value.

• Image patch size is the same as the template size.

17

Results

18

• Template is located at X = 55 , Y = 455

• Our guess is located at X = 55, Y = 455

• Ncc-value = 0.99 which is near 1 means that good correlation.

Parallel Approach

• Each processor gets part of the input image.

• Each processor will have the same template to work on.

• Individually, compute the NCC algorithm to find the max

correlation on the given image

• Detects borders and corner pixels and receive data from

neighbor nodes to complete the algorithm

• Return the highest NCC value and check if the return axis

matches with the template.

19

Results: 2 Nodes

20

Results: 4 Nodes

21

Results: 16 Nodes

22

Challenges

- Input data. When memory is not sufficient, creates many bugs

and error.

- Running a large file, sometimes the scheduler doesn’t stop, and

it will continued running on the time you set on.

- Coding with MPI library, very hard to keep track each nodes and

their data. Ex. When to stop executing each node, so that they

receive all the data they needed.

- Currently working on template matching, where I have a

1024x1024 matrix size, and a 27x27 template. Got stuck when,

the template is on more than 4 nodes.

23

References

• UB CCR Support Home page.

• https://mpi4py.readthedocs.io/en/stable/tutorial.html

• https://pypi.org/project/mpi4py/

24

https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://pypi.org/project/mpi4py/

Thank you!

25

