
CSE 633 2010 Fall semester

Author: Zhihong wei
Email: zhihongwei@buffalo.edu
Professor: Russ Miller
12/09/2010

topic

Study of parallel sorting algorithm

abstract

� Sorting data is a basic, widely used

function

� Hard to improve performance by

modify sequential sorting algorithm

� Using parallel method to shorten

running time is a good choice

Review project plan

� Step 1: make a basic parallel quickSort
programme by using openMP and C++,
compare parallel quickSort with
sequential quickSort

� Step 2: improve programme to achieve
better performance

� Step 3: make a parallel BitonicSort
programme, compare with quickSort

My Medium-grained quickSort

� A little different from Hypercube medium-grained
quickSort
1. store all data in a array at first
2. break this array into 2 parts, low part

and high part.
3. repeat step 2 until we have N arrays and data

store in array 0 < array 1<…<array N
N=node number

4. each node load the a array and sort it
independently

Analyses of quickSort programme

� Data size and processors number

data size: 210 ~ 221

processor number: 1 ~ 32

� Running time depend on data

worst case running time is much larger than expected

running time

Running time to

sorting random
data from 210 to
221 by 1 to 32
processors

Analyses of quickSort programme

Improvement

� To avoid w-c running time, we can use
a simple method to assign data
randomly to every nodes

assign the (i*N)th data to node 0

assign the (i*N +1)th data to node 1
.

.

assign the (i*N +N-1)th data to node N-1

Improvement

When sorting a
random data, after
medium-grained
quickSort step,
every node was
assigned about
67000 items, one
node has 69237
items, which is
larger than any
other nodes

Improvement

When sorting a
sorted data, after
medium-grained
quickSort step, every
node was assigned
about 65000 items,
one node has 67857
items, which is
larger than any
other nodes. The
worse case did not
appear and data
were divided more
evenly

Improvement

Running time

of sorting
random data
and sorted data

Parallel BitonicSort

� Distribute data items evenly to all
nodes

� Every nodes sort data by bitonicSort

� Merge data

Analyses of Parallel BitonicSort

� Data size and processors number

As same as quickSort

Comparing quickSort

and bitonicSort
when sorting 2^21
items, with the
increasing of
processors number,
quickSort become
more efficient.

Analyses of Parallel BitonicSort

Analyses of Parallel BitonicSort

Comparing running
time of parallel
bitonicSort step and
merge step,

with the increasing
of processors
number, merge step
running time
approach to a
constant, which
dominate the whole
running time

disadvantage

� Data set size still too small

� Inefficient of BitonicSort merge step

reference

� R.Miller, L.Boxer “Algorithms sequential
and parallel ” second edition

Thanks !

