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MotivationMotivation

•Elliptic curves are commonly used in public-key 
cryptography

►Digital Signatures

►Symmetric Key Exchange 
•Scalar multiplication of points on a curve is the 
most costly operation performed



  

Background – Finite FieldsBackground – Finite Fields

•A finite field on pn is the set of integers in {0, pn}, 
where p is a prime and n is some positive integer
•Two types of finite fields are of interest

►Prime fields, where n=1

►Uses regular arithmetic, modulo a prime p

►Binary fields, where p=2

►Uses polynomial arithmetic, modulo an 
irreducible polynomial p 



  

Background – Polynomial Background – Polynomial 
Arithmetic on a Finite FieldArithmetic on a Finite Field

•The binary number b
n-1

||b
n-2

||...||b
0
 represents the 

polynomial
•Arithmetic operations defined in terms of 
polynomials, with coefficients computed modulo 2
•Squaring is efficiently achieved on binary fields

►Inserting a 0 between consecutive bits of a 
number yields its square 

►O(n) time compared to O(n2) time for 
multiplication

∑i=0

n−1
bi x

i



  

Background – Non-Background – Non-
Adjacent FormsAdjacent Forms

•A non-adjacent form (NAF) is an alternate 
representation for an integer k such that              
where k

i
{0, ±1} and no two consecutive digits are ∈

nonzero
•A windowed NAF (wNAF) for k is the 
representation                   such that |k

i
| < 2w-1 for a 

window size w, k
i
 is 0 or odd, and for any w 

consecutive digits, at most one is nonzero

k=∑i=0

l−1
k i2

i

k=∑i=0

l−1
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Elliptic CurvesElliptic Curves

•General elliptic curve equation

•Two general types of curves are of interest:

►Prime curves:

►Binary curves: 

►Binary curve with certain properties called 
Koblitz curves allows field squaring to 
replace less efficient point doubling in scalar 
multiplication, which will be particularly 
suitable for a parallel implementation

y2+axy+by=x3+cx2+dx+e

y2=x3+ax+b
y2+xy=x3+ax2+b



  

Elliptic Curve CoordinatesElliptic Curve Coordinates

•Natural to think of curves and points in terms of 
affine coordinates (x, y) for geometric intuition 
and to describe algebraic properties
•Computation often more efficient when projecting 
on a higher dimensional space

►ie. Projective coordinates (x, y, z) from the 
affine coordinates (x/z, y/z)

•Compressed coordinates can be used to 
transmit points with minimal size

►The x affine coordinate and a bit signifying the 
corresponding y value to use



  

Prime CurvesPrime Curves

•For a prime curve, if we have nonzero 
determinant                                      we can define 
addition of points and form an abelian group:

►Closure

►Associativity

►Commutativity

►Identity Element (O, “point at infinity”)

►Inverse Element (-P for a point P)
•Two basic point operations: point addition and 
point doubling

4 a3+27b2≠0(mod p)



  

Prime Curves – Geometric Prime Curves – Geometric 
IntuitionIntuition



  

Prime Curves – Scalar Prime Curves – Scalar 
MultiplicationMultiplication

•Basic approach is the “double-and-add” method 
to compute kP given k=b

n-1
||b

n-2
||...||b

0 
the binary 

representation of k

Input: P, k=b
n-1

||b
n-2

||...||b
0

Output: Q = kP
Q=0
For i from 0 to n-1

Q=2Q
If b

i
=1 then Q=Q+P

Return Q 



  

Prime Curves – Scalar Prime Curves – Scalar 
MultiplicationMultiplication

•More efficient by a constant factor to use a wNAF 
method:

Input: P, k
Output: Q =kP

Compute wNAF of  
Precompute jP for j={1, 3, ..., 2w-1-1}
Q=O
For i from l-1 to 0

Q=2Q
if k

i
>0 then Q = Q+k

i
P 

else if k
i
≠0 then Q=Q-k

i
P

Return Q
 

k=∑i=0

l−1
k i2

i



  

Binary CurvesBinary Curves

•Binary curves require b≠0 to define an abelian 
group
•General binary curves use same algorithms as 
prime curves to compute scalar multiplication
•Koblitz curves have a property which allows more 
efficient computation of scalar multiplication

►Given a point (x, y) on the curve, (x2, y2) is 
also on the curve, and this can be used to 
replace point doubling by field squaring



  

Koblitz Curves – Koblitz Curves – ττ Operator Operator

•Define the τ operator such that τ(x, y)=(x2, y2) 
and τO=O 

►Recall that squaring on a finite field over 2m 
can be computed efficiently

•Given a point P, we have (τ2+2)P=μτP where  μ=(-
1)1-a where τj is the τ operator applied j times
•From the above result, we can consider τ as the 
complex number satisfying τ2+2=μτ

►

►Allows a scalar to be expressed in terms of τ
 

τ=(μ+√−7)/2



  

Koblitz Curves – wKoblitz Curves – wτNAFτNAF

•A number κ=r
0
+r

1
τ  on the ring          has a wτNAF 

representation                     where

►The α
i
=β

i
+γ

i
τ for each window size are chosen 

so that each precomputed point requires at 
most a single point addition and a single 
application of τ during precomputation              

 

ℤ[τ ]
κ=∑i=0

l−1
ui τ

i

ui={ 0,α±1 ,α±3 , ...,α±(2w−1−1)}



  

Koblitz Curves – wKoblitz Curves – wτNAFτNAF

•Computing the wτNAF representation for a scalar 
results in a representation that is too long in 
general – ~2m digits for an m-bit scalar
•To get a suitable length representation, find a 
complex number ρ' such that ρ'≡k (mod δ) where 
δ=(τm – 1)/(τ – 1) using partial modulo reduction

►The equivalence ensures that ρ'P≡kP, where 
ρ' has a sufficiently short representation 
bounded in length by m+a+3

►High probability of finding ρ, the shortest 
representation based on a chosen parameter C



  

Koblitz Curves – wKoblitz Curves – wτNAF τNAF 
MultiplicationMultiplication

•The wτNAF method is as follows:

Input: P, ρ'=        
Output: Q=ρ'P=kP

Precompute P
u
=α

u
P for u {±1, ±3, …, ±(2∈ w-1-1)}

Q=O
For I from l-1 to 0

Q=τQ
If u

i
≠0 then
Let u be such that α

u
=u

i
 or α

-u
=-u

i

If u
i
>0 then Q=Q+P

u

Else Q=Q-P
u

Return Q

∑i=0

l−1
ui τ

i



  

Securing Against Side Securing Against Side 
Channel AttacksChannel Attacks

•The computation methods considered so far 
depends on the input scalar
•Adversaries capable of side channel attacks, such 
as a timing attack, can exploit this to learn secret 
information
•Using a Montgomery method modifies 
multiplication algorithms in a simple way to take 
fixed time independent of the input scalar size

►Performance decreased by a constant factor

►Montgomery ladder used for prime curves

►Dummy variable used for Koblitz curves



  

Parallel Scalar Parallel Scalar 
MultiplicationMultiplication

•Let k be an n-digit long scalar and suppose we 
have 2m processors with 2m≤n

►In binary representation for prime curves

►In wτNAF representation for Koblitz curves
•We can break k into 2m parts:

•Then compute the smaller products in parallel

  

k=k2m
m∥k 2m−1

m ∥...∥k1
m

k2m
m P ,k2m−1

m P ,... , k 1
mP⇒Q2m

m ,Q2m−1
m , ...,Q1

m



  

Parallel Scalar Parallel Scalar 
MultiplicationMultiplication

•From these smaller products, we can then 
recursively recombine the Q values to obtain kP

►For prime curves, we recombine via doubling

►For Koblitz curves, we recombine via τ

►We have Q
1
0=kP

►In general denote the recombination function 
as 

  

Q j /2
i =2|k j−1

i+1 |Q j
i+1+Q j−1

i+1

Q j /2
i =τ|k j−1

i+1 |Q j
i+1+Q j−1

i+1

Q j /2
i =f (Q j

i+1 ,Q j−1
i+1 )



  

Parallel Scalar Parallel Scalar 
MultiplicationMultiplication

•The recombination steps can be represented as a 
tree:

  



  

Parallel Scalar Parallel Scalar 
MultiplicationMultiplication

•Putting this together, the algorithm for parallel 
scalar multiplication is:

Input: 
Output: 

for i=1 to 2n, in parallel

For i=n-1 to 0
For j=i+1 to 1, in parallel

Return 

P ,k=d2n
n∥d2n−1

n ∥...∥d1
n

Q=kP
Q=O

Qi
n=dn

j P

Q j /2
i =f (Q j

i+1,Q j−1
i+1 )

Q0
1



  

Parallel Scalar Parallel Scalar 
MultiplicationMultiplication

•Hypercube and tree topologies naturally suited

►Tree suitable for pipelining

►Hypercube could interweave multiple 
multiplications together

•A linear structure can also be used, but has worse 
running time than a hypercube or tree

►Better asymptotic throughput than a tree
•Higher throughput with no speedup can also be 
achieved by a simple division of processors, with 
results distributed across processors



  

Parallel Scalar Parallel Scalar 
MultiplicationMultiplication

•Messages exchanged in a hypercube with 2 
interweaved multiplications and 8 processors



  

Parallel Scalar Parallel Scalar 
MultiplicationMultiplication

•Messages exchanged while pipelining 
multiplications in a tree



  

Parallel Scalar Parallel Scalar 
MultiplicationMultiplication

•Messages exchanged while pipelining 
multiplications in a linear array



  

Asymptotic Running Time - Asymptotic Running Time - 
SequentialSequential

•In terms of point additions (A), point doublings (D), 
field size (m), and processors (p)

►The tau operator is asymptotically more 
efficient than other point operations

•For a prime curve, m point doublings and on 
average m/(1 + w) point additions are required for 
a window size of w with 2w-2 precomputation work
•Asymptotic running time is thus:

►General: O(mD+mA)

►Koblitz: O(mA)



  

Asymptotic Running Time -     Asymptotic Running Time -     
Hypercube & TreeHypercube & Tree

•First round computes multiplication of size m/p 
sequentially, requiring O(m/p D + m/p A) time
•The i-th (of log p total) recombination round 
requires 2i m/p point doublings and one addition
•Theoretical optimal speedup using m/4 processors
•Asymptotic parallel running time is thus:

►General: O(mD + (m/p + log p)A) when 2n<m/4
     O(mD + (log m)A) when 2n≥m/4

►Koblitz:   O((m/p + log p)A) when 2n<m/4
     O((log m)A) when 2n≥m/4



  

Asymptotic Running Time -       Asymptotic Running Time -       
LinearLinear

•Each processor computes in parallel a sequential 
multiplication of size m/p, requiring O(m/p) time
•Recombination requires O(m/p) point doublings 
per processor, except the last one, and a single 
point addition
•Asymptotic parallel running time is thus:

►General: O(mD + (m/p + p)A)

►Koblitz:   O((m/p + p)A)



  

Asymptotic ThroughputAsymptotic Throughput

•Throughput in a tree is determined by the 
maximum of the root’s computation time and the 
leaves’ computation time:

►General: O(1 / max(m/p (D + A), m D)

►Koblitz: O(1 / (m/p A))
•Throughput in a linear array is determined by the 
computation time in a single node:

►General: O(1 / (m/p D + m/p A))

►Koblitz: O(1 / (m/p A))



  

Practical Running Time & Practical Running Time & 
ThroughputThroughput

•Parallel overhead - O(log p) time for a tree or 
hypercube and O(p) time for a linear array

►Network delays (MPI)

►Packing/unpacking overhead (MPI)

►Synchronization delays (OpenMP)
•Constant factors impact running time

►Window sizes vary based on subscalar size, 
limiting speedup for regular multiplication



  

Practical Running Time & Practical Running Time & 
ThroughputThroughput

•Sequential portion of multiplication – point 
doubling or tau operator and scalar conversion

►Large sequential portion due to point doubling 
cost for general curves limits speedup

►More efficient tau operator reduces sequential 
portion, but sequential portion becomes more 
significant with many processors

►Sequential portion more significant for regular 
multiplication, further limiting speedup



  

Experimental ParametersExperimental Parameters

•10 standard NIST curves: P-192, P-224, P-256, P-
384, P-521, K-163, K-233, K-283, K-409, K-571
•Number of cores varied from 1-128
•Input form of scalar – NAF or binary
•Number of simultaneous multiplications varied 
from 1-16 (hypercube)
•Multiplication type – Montgomery or regular
•Logical topologies – Hypercube, Tree, Linear
•OpenSSL used to handle basic point operations
•GMP/MPFR to handle large rationals/floats



  

Experimental SetupExperimental Setup

•16 core machines utilized for all tests at UB CCR:

►Intel E5-2660 Xeon (dual 8 core)

►Infiniband Network (when using >16 cores)
•MPI Thread Safety for Hybrid Approach

►Tree/hypercube: MPI_THREAD_SERIALIZED

►Linear: MPI_THREAD_MULTIPLE
•Points and scalars generated at random
•50,000 total multiplications performed for each 
experiment



  

Experimental SetupExperimental Setup

•Linear and tree running time is not measured 
directly, but estimated

►Tree running time estimated by estimated by 
summing average running time at each tree 
level excluding the time spent waiting for other 
processors

►Linear running time estimated by summing the 
the time spent in each node sequentially plus 
the time spent in parallel



  

Sequential Running TimeSequential Running Time

•Koblitz curves (right) exhibit slower running times 
due to less support in OpenSSL and binary curves 
in general being better suited for hardware 
implementations



  

Sequential Running TimeSequential Running Time

•Montgomery methods up to 3.5 slower than 
regular multiplications (previous)
•Performance hit worse for Koblitz curves



  

Sequential Running TimeSequential Running Time

•Small improvement using NAF input
•Going forward, only binary input is presented 

►Results for NAF input show slight improvement



  

Hypercube SpeedupHypercube Speedup

•Large parallel overhead limits speedup for prime 
curves in particular

► Worse than sequential except P-256 using 2 
cores



  

Hypercube SpeedupHypercube Speedup

•Interweaving worse than dividing processors

►Same holds for other configurations – further 
graphs on simultaneous multiplications omitted



  

Hypercube OverheadHypercube Overhead

•Overhead grows with number of cores
•OpenSSL optimizations for P-224 at expense of 
packing/unpacking time explain its results



  

Hypercube OverheadHypercube Overhead

•More time spent on packing/unpacking overhead 
for Koblitz curves
•Generally less networking delays for Koblitz curves



  

Hypercube SpeedupHypercube Speedup

•Better speedup using a Montgomery method
•Prime curves show limited speedup due to larger 
sequential portion



  

Tree SpeedupTree Speedup

•Better speedup than equivalent hypercube as 
communications spread out over more time
•Overhead/constant factors outweigh parallel 
benefits for prime curves with <15 processors 



  

Tree SpeedupTree Speedup

•Better speedup using Montgomery method



  

Tree ThroughputTree Throughput

•Throughput continues to improve (except P-224) 
as number of cores increased
•Better throughput by using processors 
sequentially, but worse speedup in some cases



  

Tree ThroughputTree Throughput

•Throughput continues to improve (except P-224) 
as number of cores increased
•Better throughput by using processors 
sequentially, but worse speedup in some cases



  

Time Spent Waiting or on Time Spent Waiting or on 
Parallel Overhead in TreeParallel Overhead in Tree

•Large amount of idle time, waiting for other 
processors at non-leave levels
•Similar results for other configurations



  

Linear SpeedupLinear Speedup

•Strictly worse than sequential for prime curves
•For Koblitz curves, 2 cores give speedup comparable 
to 2 core hypercube or 3 core tree and worse 
otherwise



  

Linear SpeedupLinear Speedup

•Montgomery method shows marginal speedup for 
prime curves, worse than hypercube or tree
•Better speedup for some Koblitz curves for 2-4 cores 
compared to 2-4 core hypercube or 3-7 core tree



  

Linear ThroughputLinear Throughput

•Throughput is generally a bit better than a tree

►Strictly better to distribute multiplications 
sequentially on prime curves using since no 
speedup advantages and worse throughput



  

Linear ThroughputLinear Throughput

•Slightly better throughput than a tree when using few 
cores



  

Linear OverheadLinear Overhead

•Generally linear overhead takes up less overall time
•Similar results for other configurations



  

MPI ConclusionsMPI Conclusions

•Packing/unpacking time for some curves and 
network delays limit achievable speedup and 
throughput
•Simultaneous communication can cause congestion 
limiting speedup, as seen with a tree achieving 
better speedup than an equivalent hypercube
•Trees generally offer good balance between 
speedup and throughput
•Linear array never good for prime curves, and  
better than a tree for Koblitz curves with a small 
number of cores available



  

Challenges Moving to a Challenges Moving to a 
Hybrid ApproachHybrid Approach

•Explicit synchronization required in OpenMP
•Results from MPI indicate limiting MPI calls could 
be beneficial

►Where possible, MPI calls are merged, but this 
requires additional synchronization

•Where to use OpenMP vs MPI?

►Based on rounds in hypercube topology

►Based on level in tree topology

►Based on neighbors in linear topology



  

Hybrid Hypercube with 2 Hybrid Hypercube with 2 
MPI nodes and 4 threadsMPI nodes and 4 threads



  

Hybrid Tree with 4 MPI Hybrid Tree with 4 MPI 
nodes and 4 threadsnodes and 4 threads



  

Hybrid Linear with 2 MPI Hybrid Linear with 2 MPI 
nodes and 2 threadsnodes and 2 threads



  

Hypercube SpeedupHypercube Speedup

•Better speedup than MPI until 16 cores for prime 
curves and 8-16 cores for Koblitz curves

►Performance impact for >8 cores may be due to 
frequent cache misses between processors 



  

Hypercube OverheadHypercube Overhead

•OpenMP has less overhead compared to MPI
•Network delays with hybrid approach (>16 cores) 
quickly become significant



  

Hypercube OverheadHypercube Overhead

•Montgomery method shows less networking 
overhead, and more time spent on other overhead 



  

Hypercube SpeedupHypercube Speedup

•Montgomery methods offer better speedup up to 
8-16 cores with an initial performance hit at 2 
cores compared to MPI



  

Tree SpeedupTree Speedup

•Tree performs worse than in MPI

►Synchronization costs for a tree greater than 
speedup attainable from the parallel algorithm 



  

Tree SpeedupTree Speedup

•Tree performs worse than in MPI

►Synchronization costs for a tree greater than 
speedup attainable from the parallel algorithm 



  

Tree ThroughputTree Throughput

•Throughput for some curves comparable to 
throughput in MPI up to 15 cores

►Synchronization delays with >15 cores limits 
throughput



  

Tree ThroughputTree Throughput

•Throughput for some Koblitz curves comparable 
to throughput in MPI up to 15 cores

►Synchronization delays with >15 cores limits 
throughput



  

Time Spent Waiting or on Time Spent Waiting or on 
Parallel Overhead in TreeParallel Overhead in Tree

•Significant overhead costs and idle time (Koblitz 
curves)

►Additional costs incurred from setting locks 
used for synchronization



  

Linear SpeedupLinear Speedup

•Better speedup than in MPI with <16 cores for prime 
curves and 8 cores for Koblitz curves

►For prime curves, parallel overhead overwhelms 
algorithm’s speedup when using 2-4 cores 



  

Linear SpeedupLinear Speedup

•Surprisingly better speedup than a hypercube

►Less synchronization costs

►Performance hit at >8 cores



  

Linear ThroughputLinear Throughput

•Generally better throughput than when using MPI 
with linear array

►Performance hit when hybrid approach is used 
and when two processors per compute node used



  

Linear ThroughputLinear Throughput

•Better throughput when using <8-16 cores than in 
MPI

►Performance hit when hybrid approach is used 
and when two processors per compute node used



  

Linear OverheadLinear Overhead

•Large overhead when utilizing multiple MPI nodes for 
prime curves corresponding to network delays
•Koblitz have nearly constant overhead for all cores 
with spikes near MPI node boundaries



  

Hybrid ConclusionsHybrid Conclusions

•Synchronization delays can be worse than 
networking delays in MPI in some cases
•Observed performance moving to 16 cores 
significantly impacted the hybrid approach 

►Frequent cache misses using multiple 
processors may be the cause for these results

•Linear array showed better speedup than other 
structures, but worse throughput than in MPI

►Less overhead compared to other structures
•Merging MPI calls may not have been beneficial



  

Overall ConclusionsOverall Conclusions

•Best logical structure depends on number of cores 
available, desired throughput, desired speedup, and 
curve type

►Koblitz curves better suited for parallelization

►Splitting cores sequentially best for maximizing 
throughput

►MPI tree gives generally good balance between 
speedup and throughput, for many cores 

►OpenMP linear array gives generally good 
balance between speedup and throughput for few 
cores



  

Future & Related WorkFuture & Related Work

•Large amount of time in a tree is spent waiting for 
other processors for non-leaves, and it may be 
possible to merge some non-leave nodes
•Combining topologies may yield better throughput 
results in some cases
•Parallelism at the point or field level is also possible 
using a fixed number of processors
•Multiple multiplications on the same point can use 
globally precomputed values for better performance

►Key generation



  

Future & Related WorkFuture & Related Work

•Better results can likely be achieved if suspected 
frequent cache misses due to dual-processor 
compute nodes are accounted for

►One method to account for this is to use 2 MPI 
nodes per server (1 per processor), with 8 threads 
used per MPI node so MPI takes care of it

•Not merging MPI calls may be better suited for 
hypercubes and trees in the hybrid approach
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