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What is machine learning?

� Machine learning is a type of artificial intelligence (AI) that 
provides computers with the ability to learn without being explicitly 
programmed.[1]

� Machine learning focuses on the development of computer 
programs that can change when exposed to new data.[1]

� Easier to make machines learn real life examples rather than 
explicitly write real life rules
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What is Logistic Regression?

� Regression involves estimating the relationship between variables/features 
and dependent variable.

� Logistic Regression is a form of supervised learning algorithm where the 
ground truths are fed to the algorithm along with the features. The algorithm 
learns the relationship between the features and the ground truths and can 
help predict the classes/categories of unseen data/features.

� Requires the use of optimization algorithms such as gradient descent to get 
the best estimation of the relationship.

� Parallelization of Logistic Regression requires parallelization of optimization 
algorithms



Logistic Regression 

� We are basically trying to fit an equation y = g(xθ), 
here g(.) is the activation function.

� Logistic Regression involves:
� Initializing weights θ randomly. Also we need to initialize a 

learning parameter α and a regularization parameter ƛ.

� Gradient Descent - Compute the gradients and update the 
weights according to the learning parameters. Repeat the 
steps till convergence or till a preset number of epochs or 
iterations

� Perform validation and predict the values.



Gradient descent

▶︎ Gradient descent is a first-order 
iterative optimization algorithm.

▶︎ To find a local minimum of a 
function using gradient descent, one 
takes steps proportional to the 
negative of the gradient (or of the 
approximate gradient) of the 
function at the current point.



Gradient Descent – Algorithm

� All θ should be updated simultaneously

� Total number of computations required in each iteration depends on 

� m è Number of samples in the training dataset

� j è Number of features in each sample

� k è Number of categories/classes  
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Why Parallelize?

� Data Explosion

� Google grew from processing 100TB a day in 2004 to 20PB a day in 
2008.

� Facebook claims to store upwards of 300PB with an increase of about 
600TB daily.

� Logistic Regression involves optimization which can involve large 
computations.



What is MapReduce?

� MapReduce is a programming model and an associated implementation for 
processing and generating big data sets with a parallel, distributed algorithm 
on a cluster.

� It was created by Google, Inc. in 2004 to process large scale data that was 
obtained from the world wide web. 

� The core idea behind MapReduce is mapping your data set into a collection 
of <key, value> pairs, and then reducing over all pairs with the same key. 



MapReduce

� A MapReduce program is 
composed of 
a Map() procedure (method) 
that performs filtering and 
sorting (such as sorting students 
by first name into queues, one 
queue for each name) and 
a Reduce() method that 
performs a summary operation 
(such as counting the number of 
students in each queue, 
yielding name frequencies).



Implementation Approach

� Parallelization is implemented by dividing the data 
between the processors

� Each processor is responsible for a particular 
subset of samples. 

� The respective subset of data is distributed to each 
processor.

� Each processor performs gradient descent on its 
set of samples locally



� Each processor computes the gradients locally on its set of 
samples.

� The gradients computed is then propagated to a master 
node (PE1) which aggregates the gradients and updates the 
weights.

� The master node (PE1) then broadcasts the updated weights 
to all the PE’s in the system.

� The entire process is repeated until gradient convergence or 
till the number of epochs set has been met.
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� MNIST Handwritten Dataset

� Contains a total of 70000 
samples of images along with 
labels

� Each image has a resolution of 
28 x 28 = 784 pixels

Dataset
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Results - Speed Up
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Results – Speed Up
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Conclusion

� We can see that when the nodes are doubled, the time required to 
process/train the data decreases nearly by a factor of two. There is an 
additional overhead involved because of message passing.

� As the data partitions become small, the message passing overhead 
dominates the processing time.
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