
Image Compression using
K-Means clustering OpenMP

CSE 702 - Seminar
Instructor: Dr. Russ Miller
By: Aashna Mahajan - 50317416

Outline
• Problem statement
• Image Compression
• K-Means clustering algorithm
• Sequential Algorithm
• OpenMP
• Parallel Algorithm
• Results
• Observations
• References

2

Problem statement
Using OpenMP for Parallel Implementation of Image Compression using K-Means
clustering.

3

Image Compression
Image Compression is a type of data compression applied to digital
images, to reduce their cost for storage or transmission.

4

Applications
• Medical Imaging
• Face Recognition and Detection
• Satellite Remote Sensing
• Software and Security Industry
• Retail Stores
• Federal Government Agencies, etc.

K-Means Clustering Algorithm
• K-means clustering is the optimization technique to find the ‘k’

clusters or groups in the given set of data points.

• Initially, select ‘k’ data points to be the cluster centers.

• Assignment step - Assign each data point to the closest cluster
centers.

• Update step - Calculate the new cluster centers by taking
average of all the data points in each cluster.

• Repeat the assignment and updation steps for a particular
number of iterations.

5

Sequential Algorithm
● Read the image using Python OpenCV.
● Select ‘k’ number of clusters.
● Randomly, select ‘k’ pixels from the image to be the cluster centers.
● Iterate through each pixel in the image and assign it to the closest cluster

center.
● Take average of all the pixels in each cluster, which will give us the new cluster

centers.
● Repeat the assignment and updation steps for a particular number of

iterations.
● Update the image with the new pixels.

OpenMP

● Open Multi-Processing
● Parallel programming model using

Shared memory
● One thread that runs from beginning to

end - Master Thread
● Additional threads fork from the master

thread and then join after the parallel
implementation - Slave Threads

Parallel Algorithm
● Convert Image to pixels with RGB values in a text file.
● Consider P pixels distributed among N cores.
● Each core is assigned P/N pixel values from the text file.
● ‘k’ pixels are randomly selected as the cluster centers and assigned to

shared memory space.
● Each core identifies the clusters all it’s pixels belongs to.
● The new global cluster centers are found by taking mean of all the local

sums.
● Repeat the clustering for the specified number of iterations.
● Store information about each point’s final cluster center in a text file using the

cluster centers of the final iteration.
● Convert pixels in text file back to the Image with reduced colors.

Results

Original Image Compressed Image - 5 Clusters Compressed Image - 10 Clusters

Time Analysis

Number of
Cores

Time (s)

2 18.77

4 9.38

8 4.78

16 2.47

32 1.29

5 Clusters and 20 Iterations

Time Analysis

Number of
Cores

Time (s)

2 43.07

4 21.58

8 11.01

16 5.71

32 2.98

5 Clusters and 50 Iterations

Time Analysis

Number of
Cores

Time (s)

2 33.87

4 16.95

8 8.364

16 4.4

32 2.29

10 Clusters and 20 Iterations

Time Analysis

Number of
Cores

Time (s)

2 76.34

4 38.17

8 19.58

16 10.17

32 5.34

10 Clusters and 50 Iterations

Observations
• Significant speedup observed as the cores were increased upto 32.

• The performance gets lower with 64 or more cores due to implicit context-switching and

increased overheads.

References
• Algorithms Sequential & Parallel: A Unified Approach (Dr. Russ Miller, Dr.Laurence Boxer)

• https://en.wikipedia.org/wiki/OpenMP

• https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-basics.html

• https://towardsdatascience.com/image-compression-using-k-means-clustering-aa0c91bb0eeb

https://towardsdatascience.com/image-compression-using-k-means-clustering-aa0c91bb0eeb

 Thank You

