MATRIX MULTIPLICATION USING MPI

Adithya Raman

Final Review (12/02/2021)

工面University at Buffalo The sate unvesity of New vork

Matrix Multiplication

- A matrix is linear transformation
- Applications in
- Graphics:
- Scaling, Translations and Rotations of vectors
- Can represent a system of linear equations
- In general if A is $(l \times m)$ and B is $(m \times n)$ then the product is an $(I \times n)$ matrix whose elements are :

- $\mathrm{C}_{1 * \mathrm{n}}=$

Straight forward single processor serial multiplication

```
Algorithm 1: The Naive Matrix Multiplication Algorithm
    Data: S/A//B/,P/G//H/
    Result: Q///]
    if B}==G\mathrm{ then
        for m}=0:m<A:m++\mathrm{ do
            for r=0:r<H:r++ do
            Q[m]/r]=0;
            for }k=0:k<G:k++\mathrm{ do
            | Q (m)/r] + =S S/m]/k]*P[k//r];
            end
            end
            end
    end
```


- Multiplying a matrix of size (AxB) with a matrix of size ($B x C$) using the naive approach gives a complexity of
- $O\left(A^{*} B^{*} C\right)$

Cannon's Algorithm (working with square matrices)

- Let $A=\left[a_{i j}\right]_{\mathrm{nxn}}$ and $B=\left[b_{i j}\right]_{\mathrm{nxn}}$ be two matrices
- To compute $\mathrm{C}=\mathrm{AB}$ using ' p ' processors:
- Partition A and B into p square blocks $A_{i, j}$ and $B_{i, j}$ such that ($0<=i, j<=p^{1 / 2}$)
. Size of each block will be $\left(n / p^{1 / 2}\right) x\left(n / p^{1 / 2}\right)$
- Initialize C sub-blocks at each processor with size $\left(n / p^{1 / 2}\right) x\left(n / p^{1 / 2}\right)$ and values as 0

- Algorithm:

1) At each processor compute the partial sum of the C sub-block in that processor using current A sub-block and B-sub-block
2) Shift A sub-block one step to the left
3) Shift B sub-block one step up
es

Parallel Algorithm Performance

nodes	$\mathrm{T}(250 \times 250)$	$\mathrm{T}(500 \times 500)$	$\mathrm{T}(750 \times 750)$	T $(1000 \times 1000$ $)$	T $(10000 \times 1000$ $0)$
1	0.096	0.489	1.62	3.53	\sim
2	0.130	0.67	1.706	7.23	\sim
4	0.072	0.36	0.98	2.42	\sim
8	0.041	0.246	0.53	1.089	\sim
16	0.034	0.18	0.32	0.56	580.794
32	0.044	0.17	0.28	0.31	367.178
64	0.058	0.25	0.43	0.54	161.535

Parallel Algorithm Performance

Parallel Algorithm Performance

University at Buffalo The State University of New York

Speedup

Note :

- We use the runtime of the best performing serial algorithm to calculate speedup
- The serial algorithm I used is NOT the most efficient.

Concluding Remarks

- Efficiency of the parallel algorithm decreases with increasing number of nodes
- Beyond 32 nodes the run-time of parallel algorithm increases
- Speedup is much higher for larger problem sizes
- Comparing the 1000×1000 vs the 250×250 execution

