University at Buffalo The State University of New York

MATRIX MULTIPLICATION USING MPI

Adithya Raman Final Review (12/02/2021)

University at Buffalo The State University of New York

Matrix Multiplication

- . A matrix is linear transformation
- Applications in
 - Graphics:
 - Scaling, Translations and Rotations of vectors
 - . Can represent a system of linear equations
- In general if A is (I x m) and B is (m x n) then the product is an (I x n) matrix whose elements are :
 - C_{l*n}=

University at Buffalo The State University of New York

Straight forward single processor serial multiplication

Algorithm 1: The Naive Matrix Multiplication Algorithm

Data: S[A][B], P[G][H]Result: Q[][]if B == G then for m = 0; m < A; m++ do $\begin{bmatrix} for r = 0; r < H; r++ do \\ Q[m][r] = 0; \\ for k = 0; k < G; k++ do \\ Q[m][r] + = S[m][k] * P[k][r]; \\ end \\ end$

Source:https://www.baeldung.com/cs/matrix-multiplication-algorithms

Multiplying a matrix of size (AxB) with a matrix of size (BxC) using the naive approach gives a complexity of

 O(A*B*C)

University at Buffalo The State University of New York

Cannon's Algorithm (working with square matrices)

- Let $A = [a_{ij}]_{nxn}$ and $B = [b_{ij}]_{nxn}$ be two matrices
- To compute C=AB using p' processors:
 - Partition A and B into p square blocks A_{i,j} and B. such that (0 <= i,j <= p^{1/2})
 - B_{i,j} such that (0 <= i,j <= $p^{1/2}$) • Size of each block will be $(n/p^{1/2})x(n/p^{1/2})$
 - Initialize C sub-blocks at each processor with size $(n/p^{1/2})x(n/p^{1/2})$ and values as 0

. Algorithm:

- At each processor compute the partial sum of the C sub-block in that processor using current A sub-block and B-sub-block
- 2) Shift A sub-block one step to the left

Pi Pi Pi

Po Pio Pii

P13 P14

 P_{b}

3) Shift B sub-block one step up

es

Parallel Algorithm Performance

nodes	T(250x250)	T (500x500)	T(750x750)	T (1000x1000)	T (10000x1000 0)
1	0.096	0.489	1.62	3.53	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2	0.130	0.67	1.706	7.23	~
4	0.072	0.36	0.98	2.42	2
8	0.041	0.246	0.53	1.089	
16	0.034	0.18	0.32	0.56	580.794
32	0.044	0.17	0.28	0.31	367.178
64	0.058	0.25	0.43	0.54	161.535

Parallel Algorithm Performance

Parallel Algorithm Performance

Speedup

Note :

- We use the runtime of the best performing serial algorithm to calculate speedup
- The serial algorithm I used is NOT the most efficient.

Concluding Remarks

- Efficiency of the parallel algorithm decreases with increasing number of nodes
- Beyond 32 nodes the run-time of parallel algorithm increases
- Speedup is much higher for larger problem sizes
 - Comparing the 1000x1000 vs the 250x250 execution

