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Why Bitonic Sort?

* No of comparisons in Bitonic sort are O(n Log 2n)

* No of comparisons done by most of the algorithms like Merge
Sort or Quick Sort take O(n Logn)

* Bitonic sort is better for parallel implementation
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Bitonic Sequence

A segquence numbers is said to be bitonic if and only if
1. Monotonically increases and then monotonically decreases

2. Monotonically decreases and then monotonically increases

3. Can be split into two parts that can be interchanged to give
either of the first two cases. 25
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Rearrange to a bitonic sequence
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Algorithm

BitonicSort(a, low,high,direction): BitonicMerge(a, low,high, direction):
if high> 1: if high > 1.
k = high/2 k = high/2
BitonicSort(a, low, k, 1) for i in range(low , low+k):
BitonicSort(a, low+k, k, 0) // Based on direction swap the data
BitonicMerge(a, low, high, direction) a[i],afi+k] = a[i+k],a]i]

BitonicMerge(a, low, k, direction)

BitonicMerge(a, low+k, k, direction)
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CUDA Steps

To execute any CUDA program, there are three main steps:

* Copy the input data from host memory to device memory, also
known as host-to-device transfer (cudaMemcpyHostToDevice)

* Load the GPU program and execute

* Copy the results from device memory to host memory, also called
device-to-host transfer (cudaMemcpyDeviceToHost)
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Parallel Algorithm Implementation

* N — No. of threads

n — No. of blocks

* Generate the (n*N) data randomly

* Allocate the GPU Memory

* Transfer the array to GPU

* Launch the kernel

* Compare the element using block id and thread id parallelly
* Repeat the same process for each level

* Copy back array to CPU
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Threads and Blocks

* A group of threads is called a CUDA block. CUDA
blocks are grouped into a grid.

 Threads are indexed using the built-in 3D variable
threadldx

« Blocks are also indexed using the in-built 3D variable
called blockldx

« Multiple threads in one block are more optimal than
multiple blocks with one thread

Grid

Block (0, 0)

Block (1, 0)

Block (2, 0)

Block (0, 1)

Block (1, 1)

“Block (2, 1)

Block (1, 1)
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Results
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1 Million Data

No. of Threads Time(s) .
16 0.043177 o
32 0.031664 o
64 0.023544 g oo
128 0.01783 o
256 0.013715
512 0.011017 : v " tweass
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16 Million Data

No. of Threads Time(s) Z:
16 0.503972 0:4
32 0.350034 €03
64 0.260489 |_ 0.2
128 0.205095 0.1
256 0.164531 " - o 108 256 512
512 0.13801 e
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134 Million Data

No. of Threads Time(s) Z,
16 5.777644 5
32 3.796656 g’
64 2.908625
128 2.294748 1
256 1.794665 . .
512 1.494665 e
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Conclusion

* Since in CUDA kernels issue instruction in wraps(32 threads). If we
select 50 threads per block, CUDA would still assign it in batch of
64, which will waste the usage of 14 threads.

* Blocks with multiple thread will run faster as threads have a shared
memory for each block
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Thank You.
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