
Parallel Implementation of 

Bitonic Sort using CUDA

Presented For CSE702

Instructor: Dr. Russ Miller

Presented By:

Anushree Parmar



Why Bitonic Sort?

• No of comparisons in Bitonic sort are O(n Log 2n)

• No of comparisons done by most of the algorithms like Merge 

Sort or Quick Sort take O(n Logn)

• Bitonic sort is better for parallel implementation



Bitonic Sequence
A sequence numbers is said to be bitonic if and only if

1. Monotonically increases and then monotonically decreases 

2. Monotonically decreases and then monotonically increases

3. Can be split into two parts that can be interchanged to give 

either of the first two cases.



Rearrange to a bitonic sequence



No of comparison 

levels
1 2 3



No of comparison 

levels
4



Algorithm

BitonicSort(a, low,high,direction): 

if high> 1: 

k = high/2

BitonicSort(a, low, k, 1) 

BitonicSort(a, low+k, k, 0) 

BitonicMerge(a, low, high, direction)

BitonicMerge(a, low,high, direction): 

if high > 1: 

k = high/2

for i in range(low , low+k):

// Based on direction swap the data

a[i],a[i+k] = a[i+k],a[i]

BitonicMerge(a, low, k, direction) 

BitonicMerge(a, low+k, k, direction)



CUDA Steps

To execute any CUDA program, there are three main steps:

• Copy the input data from host memory to device memory, also 

known as host-to-device transfer (cudaMemcpyHostToDevice)

• Load the GPU program and execute

• Copy the results from device memory to host memory, also called 

device-to-host transfer (cudaMemcpyDeviceToHost)



Parallel Algorithm Implementation

• N – No. of threads

• n – No. of blocks

• Generate the (n*N) data randomly 

• Allocate the GPU Memory

• Transfer the array to GPU

• Launch the kernel

• Compare the element using block id and thread id parallelly 

• Repeat the same process for each level

• Copy back array to CPU



Threads and Blocks

• A group of threads is called a CUDA block. CUDA 

blocks are grouped into a grid.

• Threads are indexed using the built-in 3D variable 

threadIdx

• Blocks are also indexed using the in-built 3D variable 

called blockIdx

• Multiple threads in one block are more optimal than 

multiple blocks with one thread



Results



1 Million Data 

No. of Threads Time(s)

16 0.043177

32 0.031664

64 0.023544

128 0.01783

256 0.013715

512 0.011017
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

16 32 64 128 256 512

T
im

e

Threads



16 Million Data 

No. of Threads Time(s)

16 0.503972

32 0.350034

64 0.260489

128 0.205095

256 0.164531

512 0.13801

0

0.1

0.2

0.3

0.4

0.5

0.6

16 32 64 128 256 512

T
im

e

Threads



134 Million Data 

No. of Threads Time(s)

16 5.777644

32 3.796656

64 2.908625

128 2.294748

256 1.794665

512 1.494665

0

1

2

3

4

5

6

7

16 32 64 128 256 512

T
im

e

Threads



Conclusion

• Since in CUDA kernels issue instruction in wraps(32 threads). If we 

select 50 threads per block, CUDA would still assign it in batch of 

64, which will waste the usage of 14 threads.

• Blocks with multiple thread will run faster as threads have a shared 

memory for each block



References

• Algorithms Sequential and Parallel: A Unified Approach by Russ 

Miller and Laurence Boxer

• https://www.nvidia.com/content/GTC-2010/pdfs/2131_GTC2010.pdf 

• https://en.wikipedia.org/wiki/CUDA 

• https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-

model/ 

• https://www.youtube.com/watch?v=F620ommtjqk&list=PLGvfHSgImk

4aweyWlhBXNF6XISY3um82_&index=1&ab_channel=Udacity 

http://www.cs.utah.edu/~hari/teaching/paralg/slides/lec06.html#/3/13
http://www.cs.utah.edu/~hari/teaching/paralg/slides/lec06.html#/3/13
http://www.cs.utah.edu/~hari/teaching/paralg/slides/lec06.html#/3/13
http://www.cs.utah.edu/~hari/teaching/paralg/slides/lec06.html#/3/13


Thank You.


