
Parallel BFS For Distributed Memory with 2D

Partitioning

1

CSE 708 – Programming Massively Parallel Systems

Under guidance of Dr. Russ Miller

Presentation by – Arshabh Semwal

UB Person Number - 50419031

Motivations

2

Graph processing operates on a large volume of highly connected data.

Real-world applications of graph processing includes:

• Social network

• Digital maps

• Webpage hyperlinks

• Very Large-Scale Integration (VLSI) layout of integrated circuit (IC) and

more

Applications of BFS

3

Finding Shortest Path: In an unweighted graph, the shortest path is the path with least

number of edges. With Breadth First, we always reach a vertex from given source using

the minimum number of edges.

Finding Minimum Spanning Tree for unweighted graph In an unweighted graph, in case

of unweighted graphs, any spanning tree is Minimum Spanning Tree, and we can use

either Depth or Breadth first traversal for finding a spanning tree.

Applications of BFS

4

Peer to Peer Networks: In Peer-to-Peer Networks like BitTorrent, Breadth First Search

is used to find all neighbor nodes.

Social Networking Websites: In social networks, we can find people within a given

distance ‘k’ from a person using Breadth First Search till ‘k’ levels.

GPS Navigation systems: Breadth First Search is used to find all neighboring

locations.

Broadcasting in Network: In networks, a broadcasted packet follows Breadth First

Search to reach all nodes.

Adjacency Matrix Representation of a Graph

Note: Image Source- https://tva1.sinaimg.cn/large/007S8ZIlly1ghlud2fq7sj31bh0n4jub.jpg

Sequential BFS

6

BredthFirstSerach(G, A): //G is graph and A is source node

1.

2.

3.

4.

5.

6.

7.

8.

9.

Let Q be the queue

Q.enqueue(A)

Mark A node as visited.

While (Q is not empty)

B = Q.dequeue()

Processing all the neighbors of B

For all neighbors C of B

If C is not visited, Q. enqueue(C)

Mark C a visited

For Graph representation in Adjacency Matrix of size N x N, the time complexity for BFS is O(𝑁2)

Note: Image Source from guru99.com (https://www.guru99.com/breadth-first-search-bfs-graph-example.html)

7
Note : Image Source Wikipedia: https://en.wikipedia.org/wiki/Parallel_breadth-first_search

2-D Partition Parallel BFS Algorithm

2-D Partition of Data

NOTE: The key idea in parallelizing the BFS algorithm is to synchronize levels in which a node is

visited from the start node

2-D Partition of Data

• Let total number of processor are P

Then P = M*M i.e. P is a perfect square.

• Then the adjacent matrix of size N*N is divided into (N/M)*(N/M) size.

• Let the total vertices are N (since size of adjacency matrix is N*N) then

each processor will have N/P vertices.

Parallel BFS 2-D Partition

1

1

The main steps of BFS traversal in the following algorithm are:

• Construct the frontier with vertexes from local storage.

• Terminate the traversal if frontier from all processors are empty.

• Expand phase - based on local vertexes, only send messages to processors in processor-

column to tell them these vertexes are in the frontier, receive messages from these

processors.

• Merge all receiving messages and form the net frontier N.

• Fold phase - based on the local vertexes in next frontier, send messages to owner

processors of these vertexes in processor-row.

• Merge all receiving messages and update the distance value of vertexes in the next

frontier.

Data Used

12

Two data are used:

1. 1K Nodes data generated.

2. 400K Nodes data generated.

Runtime as a Function of Processors on 1000 vertices dataset

0

2

4

6

8

10

12

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0

R
U

N
TI

M
E

IN
 S

EC
O

N
D

S

NUMBER OF PROCESSORS

1000 NODES DATASET

13

Runtime Vs Speedup on 1000 nodes dataset

0

5

10

15

20

25

30

35

4 9 16 25 36 49 64 81 100 121 144

Number of Processors

SPEEDUP vs RUNTIME W.R.T. PROCESSORS FOR 1000 VERTICES DATA

runtime speedup

13

Runtime Vs Speedup on 1000 nodes dataset

0

5

10

15

20

25

30

35

0 20 40 60 80 100 120 140 160

Number of Processors

SPEEDUP vs RUNTIME W.R.T. PROCESSORS FOR 1000 VERTICES DATA

runtime speedup

Runtime as a Function of Processors on 400K vertices
dataset

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120 140 160

R
u

n
ti

m
e

in
 s

ec
o

n
d

s

Number of processors

RUNTIME W.R.T. PROCESSORS FOR 400K VERTICES DATA

13

Speedup on 400K nodes dataset

0

10

20

30

40

50

60

70

4 9 16 25 36 49 64 81 100 121 144

SPEEDUP W.R.T. PROCESSORS FOR 400K VERTICES DATA

speedup

13

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120 140 160

SPEEDUP vs RUNTIME W.R.T. PROCESSORS FOR 400K VERTICES DATA

runtime speedup

Observations:

19

1. For smaller input of 1000 vertices the runtime slowed done after 100 processors. This

shows that the network overhead become costlier in comparison to the speedup achieved

by the division of computation across processors.

2. For 400K vertex dataset runtime kept on decreasing as the number of processors increased

from 4 to 144. This shows that for larger dataset this algorithm performs very well and

achieve consistent speedup.

3. This algorithm works best with larger dataset where computation per processors are

higher which enables it to take advantage of parallel processing and gain considerable

sustainable speedups. Also, higher density graph are much better suited than lower

density graph as adjacency matrix is not a suitable data structure to store lower density

graphs.

References

20

1. Parallel BFS 2-D Partition - https://en.wikipedia.org/wiki/Parallel_breadth-

first_search

2. Parallel Breadth-First Search on Distributed Memory Systems -

https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf

3. Image reference on slide 7: https://www.guru99.com/breadth-first-

search-bfs-graph-example.html

4. Image reference on slide 5:

https://tva1.sinaimg.cn/large/007S8ZIlly1ghlud2fq7sj31bh0n4jub.jpg

https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf
https://www.guru99.com/breadth-first-search-bfs-graph-example.html
https://tva1.sinaimg.cn/large/007S8ZIlly1ghlud2fq7sj31bh0n4jub.jpg

